首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72550篇
  免费   143123篇
  国内免费   33010篇
  248683篇
  2019年   3182篇
  2018年   2573篇
  2017年   2369篇
  2016年   2490篇
  2015年   2793篇
  2014年   3158篇
  2013年   2958篇
  2012年   3446篇
  2011年   3960篇
  2010年   5256篇
  2009年   10382篇
  2008年   4442篇
  2007年   4335篇
  2006年   3240篇
  2005年   3194篇
  2004年   2970篇
  2003年   2440篇
  2002年   3200篇
  2001年   4399篇
  1999年   6784篇
  1998年   8906篇
  1997年   9115篇
  1996年   8458篇
  1995年   8746篇
  1994年   8125篇
  1993年   7790篇
  1992年   7726篇
  1991年   7756篇
  1990年   8581篇
  1989年   7837篇
  1988年   7131篇
  1987年   6229篇
  1986年   5768篇
  1985年   5198篇
  1984年   4022篇
  1983年   3224篇
  1982年   3563篇
  1981年   3213篇
  1980年   3143篇
  1979年   3246篇
  1978年   2957篇
  1977年   2892篇
  1976年   2717篇
  1975年   2300篇
  1974年   2455篇
  1973年   2460篇
  1972年   2809篇
  1971年   2590篇
  1970年   2341篇
  1969年   2390篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
We have investigated the time course of the degradation of a supported dipalmitoylphosphatidylcholine bilayer by phospholipase A2 in aqueous buffer with an atomic force microscope. Contact mode imaging allows visualization of enzyme activity on the substrate with a lateral resolution of less than 10 nm. Detailed analysis of the micrographs reveals a dependence of enzyme activity on the phospholipid organization and orientation in the bilayer. These experiments suggest that it is possible to observe single enzymes at work in small channels, which are created by the hydrolysis of membrane phospholipids. Indeed, the measured rate of hydrolysis of phospholipids corresponds very well with the enzyme activity found in kinetic studies. It was also possible to correlate the number of enzymes at the surface, as calculated from the binding constant to the number of starting points of the hydrolysis. In addition, the width of the channels was found to be comparable to the diameter of a single phospholipase A2 and thus further supports the single-enzyme hypothesis.  相似文献   
102.
The retinoblastoma (pRB) family of proteins includes three proteins known to suppress growth of mammalian cells. Previously we had found that growth suppression by two of these proteins, p107 and p130, could result from the inhibition of associated cyclin-dependent kinases (cdks). One important unresolved issue, however, is the mechanism through which inhibition occurs. Here we present in vivo and in vitro evidence to suggest that p107 is a bona fide inhibitor of both cyclin A-cdk2 and cyclin E-cdk2 that exhibits an inhibitory constant (Ki) comparable to that of the cdk inhibitor p21/WAF1. In contrast, pRB is unable to inhibit cdks. Further reminiscent of p21, a second cyclin-binding site was mapped to the amino-terminal portions of p107 and p130. This amino-terminal domain is capable of inhibiting cyclin-cdk2 complexes, although it is not a potent substrate for these kinases. In contrast, a carboxy-terminal fragment of p107 that contains the previously identified cyclin-binding domain serves as an excellent kinase substrate although it is unable to inhibit either kinase. Clustered point mutations suggest that the amino-terminal domain is functionally important for cyclin binding and growth suppression. Moreover, peptides spanning the cyclin-binding region are capable of interfering with p107 binding to cyclin-cdk2 complexes and kinase inhibition. Our ability to distinguish between p107 and p130 as inhibitors rather than simple substrates suggests that these proteins may represent true inhibitors of cdks.  相似文献   
103.
104.
A phosphotransferase-dependent aryl-β-glucoside uptake and utilisation system (abg) was isolated from the ruminal Clostridium (“C. longisporum”). The system is composed of three genes, abgG, abgF and abgA, and a number of regulatory regions, including terminator/antiterminator type stem-loop structures preceding the abgG and abgF genes. Similarity analysis of the proteins encoded by these genes indicated that they were responsible for the regulation of the abg system through antitermination (AbgG), the uptake and phosphorylation of aryl-β-glucosides (AbgF) and the hydrolysis of the intracellular phosphorylated glycosides (AbgA). Experimental evidence for the functions of AbgF and AbgA was obtained. Although it was not possible to demonstrate any function for AbgG, a promoter 5′ to the abgG gene was identified which was responsible for expression of the downstream genes. The abg system is remarkably similar to operons from the gram negative Enterobacteriaceae, both in the coding and non-coding regulatory regions. Received: 3 April 1997 / Accepted: 8 September 1997  相似文献   
105.
106.
107.
The ftsB gene of Escherichia coli is believed to be involved in cell division. In this report, we show that plasmids containing the nrdB gene could complement the ftsB mutation, suggesting that ftsB is an allele of nrdB. We compared changes in the cell shape of isogenic nrdA, nrdB, ftsB, and pbpB strains at permissive and restrictive temperatures. Although in rich medium all strains produced filaments at the restrictive temperature, in minimal medium only a 50 to 100% increase in mean cell mass occurred in the nrdA, nrdB, and ftsB strains. The typical pbpB cell division mutant also formed long filaments at low growth rates. Visualization of nucleoid structure by fluorescence microscopy demonstrated that nucleoid segregation was affected by nrdA, nrdB, and ftsB mutations at the restrictive temperature. Measurements of beta-galactosidase activity in lambda p(sfiA::lac) lysogenic nrdA, nrdB, and ftsB mutants in rich medium at the restrictive temperature showed that filamentation in the nrdA mutant was caused by sfiA (sulA) induction, while filamentation in nrdB and ftsB mutants was sfiA independent, suggesting an SOS-independent inhibition of cell division.  相似文献   
108.
Summary A temperature shift-up accompanied by a reduction in RNA polymerase activity in Escherichia coli causes an increased rate of initiation leading to a 1.7- to 2.2-fold increase in chromosome copy number. A temperature shift-up without a reduction in polymerase activity induces only a transient non-scheduled initiation of chromosome replication caused by heat shock with no detectable effect on chromosome copy number.  相似文献   
109.
The evaluation of growth by dry weight determination of fungus mycelium for agar plates was examined. The data obtained were statistically analyzed. This method was shown to be sufficiently accurate to be used as an investigative tool.  相似文献   
110.
Heat treatment (37 degrees C) of transgenic tobacco (Nicotiana tabacum) plants led to a reversible reduction or complete loss of transgene-encoded activities in about 40% of 10 independent transformants carrying the luciferase-coding region fused to the 355 cauliflower mosaic virus or the soybean small subunit promoter and the nopaline synthase promoter driving the neomycin phosphotransferase gene, whereas the other lines had temperature-tolerant activities. Temperature sensitivity or tolerance of transgene-encoded activities was heritable. In some of the lines, temperature sensitivity of the transgene-encoded activities depended on the stage of development, occurring in either seedlings (40% luciferase and 50% neomycin phosphotransferase) or adult plants (both 40%). The phenomenon did not correlate with copy numbers or the homo- or hemizygous state of the transgenes. In lines harboring a temperature-sensitive luciferase activity, reduction of bioluminescence was observed after 2 to 3 h at 37 degrees C. Activity was regained after 2 h of subsequent cultivation at 25 degrees C. Irrespective of the reaction to the heat treatment, the level of luciferase RNA was slightly increased at 37 degrees C. Only in lines showing temperature sensitivity of transgene-encoded activities was the amount of luciferase and neomycin phosphotransferase strongly reduced. In sterile culture, heat treatment for 15 d did not cause visible damage or changes in plant morphology. In all plants tested a slight induction of the heat-shock response was observed at 37 degrees C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号