首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4268篇
  免费   399篇
  国内免费   193篇
  2023年   31篇
  2022年   61篇
  2021年   135篇
  2020年   110篇
  2019年   123篇
  2018年   175篇
  2017年   123篇
  2016年   179篇
  2015年   275篇
  2014年   315篇
  2013年   294篇
  2012年   429篇
  2011年   344篇
  2010年   246篇
  2009年   212篇
  2008年   252篇
  2007年   234篇
  2006年   231篇
  2005年   193篇
  2004年   167篇
  2003年   151篇
  2002年   122篇
  2001年   66篇
  2000年   47篇
  1999年   48篇
  1998年   31篇
  1997年   23篇
  1996年   21篇
  1995年   19篇
  1994年   16篇
  1993年   10篇
  1992年   15篇
  1991年   15篇
  1990年   14篇
  1989年   10篇
  1988年   12篇
  1987年   9篇
  1986年   11篇
  1985年   12篇
  1984年   5篇
  1983年   4篇
  1982年   9篇
  1981年   6篇
  1980年   8篇
  1979年   6篇
  1977年   5篇
  1976年   7篇
  1973年   4篇
  1972年   4篇
  1971年   6篇
排序方式: 共有4860条查询结果,搜索用时 15 毫秒
91.
92.
This minireview mainly aims at the study of S-adenosyl-l-methionine (SAM) production by microbial fermentation. A brief introduction of the biological role and application of SAM was presented. In general, SAM production can be improved by breeding of the producing strain through the conventional mutation or genetic engineering approach in the molecular or cellular scale, by optimization of culture conditions in the cellular scale or bioreactor engineering scale, or by multiscale approach. The productivity of SAM fermentation has been improved greatly through the efforts of many researchers using the methods previously mentioned. The SAM-producing strains used extensively are Pichia pastoris and Saccharomyces cerevisiae. The effect of SAM on antibiotic production was also exemplified. The skill and scheme beneficial to the improvement of SAM production involves the enhancement of SAM synthetase (methionine adenosyltransferase) activity and selection of engineered constitutive promoters with appropriate strength; seeking for and eliminating the rate-limiting factors in SAM synthesis, namely, knocking off the genes that transform SAM and l-methionine (L-Met) to cysteine; release the feedback inhibition of SAM to methylenetetrahydrofolate reductase; blocking the transsulfuration pathway by interfering the responsible enzymes; enhancing ATP level through pulsed feeding of glycerol; and optimizing the L-Met feeding strategy. Precise control of gene expression and quantitative assessment of physiological parameters in engineered P. pastoris were highlighted. Finally, a discussion of the prospect of SAM production was presented.  相似文献   
93.
Therapeutic recombinant human catalase (rhCAT) can quench infection-induced reactive oxygen species (ROS), thereby alleviating the associated tissue damage. Although the intranasal route is efficient to deliver native rhCAT to the lung, the therapeutic effect is limited by rapid elimination from the blood. In this study, we modified rhCAT with the active polymer, polyethylene glycol monomethyl ether (PEG)-5000, and analyzed the pharmacokinetics of PEGylated rhCAT in mice. The high tetra-PEGylation ratio was about 60 %, and PEGylation prolonged the half-life of rhCAT in serum (75 vs. 13.5 min for native rhCAT). The protective effects of PEG-rhCAT were investigated in a mouse model of influenza virus A (H1N1)-associated pneumonia. PEG-rhCAT was more effectively delivered than native rhCAT and was associated with higher survival ratio, less extensive lung injuries, reduced ROS levels, and lower viral replication. Collectively, these findings indicate that PEGylation can enhance the therapeutic efficacy of native rhCAT and suggest that PEGylated rhCAT may represent a novel complement therapy for H1N1 influenza-induced pneumonia.  相似文献   
94.
95.
In addition to their impact on natural habitats, invasive alien plants can have a significant negative effect on agricultural systems and cause economic losses. Flood‐irrigated orchards in the Mediterranean Basin are vulnerable to the invasion of alien weeds, primarily because of the traditional management practices used in the orchards, which are characterized by high soil moisture during the dry summer period, nutrient availability and high levels of disturbance. This study sought to determine whether their biological traits can explain the success of alien weed species. To answer this question, 408 floristic relevés were conducted in 136 flood‐irrigated orchards on the Plains of Lleida (Catalonia, NE of Spain). Richness and cover of native and alien weeds were compared. Furthermore, a set of biological traits were compared between successful and non‐successful weeds for the whole data and separately between native and alien weeds using logistic regression and classification trees. In flood‐irrigated orchards, alien species covered most of their area, even though the richness of alien species was lower than that of the native species. The most important species were C4 species with seeds dispersed by water, and on the other hand, rosulate and caespitose‐reptant hemicryptophytes with long flowering period. Most of these traits fitted with those of the invasive alien weeds, which were mostly C4 species with seeds dispersed by water. Perennial life form characterized successful native weeds. In this study, we discuss how the traditional management of flood irrigation in fruit‐tree orchards favours invasive alien weeds that have specific traits, acting as a reservoir for the spread of alien weeds into other crops and surrounding riparian habitats. We also propose changing management practices in order to avoid the selection of alien weeds and to promote native species.  相似文献   
96.
Metagenomic resources representing ruminal bacteria were screened for novel exocellulases using a robotic, high-throughput screening system, the novel CelEx-BR12 gene was identified and the predicted CelEx-BR12 protein was characterized. The CelEx-BR12 gene had an open reading frame (ORF) of 1140 base pairs that encoded a 380-amino-acid-protein with a predicted molecular mass of 41.8 kDa. The amino acid sequence was 83% identical to that of a family 5 glycosyl hydrolase from Prevotella ruminicola 23. Codon-optimized CelEx-BR12 was overexpressed in Escherichia coli and purified using Ni–NTA affinity chromatography. The Michaelis–Menten constant (Km value) and maximal reaction velocity (Vmax values) for exocellulase activity were 12.92 μM and 1.55 × 104 μmol min−1, respectively, and the enzyme was optimally active at pH 5.0 and 37 °C. Multifunctional activities were observed against fluorogenic and natural glycosides, such as 4-methylumbelliferyl-β-d-cellobioside (0.3 U mg−1), CMC (105.9 U mg−1), birch wood xylan (132.3 U mg−1), oat spelt xylan (67.9 U mg−1), and 2-hydroxyethyl-cellulose (26.3 U mg−1). Based on these findings, we believe that CelEx-BR12 is an efficient multifunctional enzyme as endocellulase/exocellulase/xylanase activities that may prove useful for biotechnological applications.  相似文献   
97.
The phosphatidylinositol 3 kinase (PI3K) pathway regulates fundamental cellular processes such as metabolism, proliferation, and survival. A central component in this pathway is the p85α regulatory subunit, encoded by PIK3R1. Using whole-exome sequencing, we identified a heterozygous PIK3R1 mutation (c.1945C>T [p.Arg649Trp]) in two unrelated families affected by partial lipodystrophy, low body mass index, short stature, progeroid face, and Rieger anomaly (SHORT syndrome). This mutation led to impaired interaction between p85α and IRS-1 and reduced AKT-mediated insulin signaling in fibroblasts from affected subjects and in reconstituted Pik3r1-knockout preadipocytes. Normal PI3K activity is critical for adipose differentiation and insulin signaling; the mutated PIK3R1 therefore provides a unique link among lipodystrophy, growth, and insulin signaling.  相似文献   
98.
For the first time the life cycle of the common land snail Trochulus hispidus was completely described in Central Europe (Poland). This is a semelparous species predominantly with an annual life cycle and the reproductive period lasting from April till October. The first young snails hatch in spring, grow rapidly in summer and reach ca. 4 whorls until winter. In spring of the next year they mature and reproduce. After that they die. There is hardly any growth from late autumn till early spring. The average proportional growth rate is ca. 0.3 whorl/month in the wild. The fastest growth is present in the youngest snails and then gradually decreases over the course of their age. Laboratory and field observations allowed for establishing the following life cycle parameters: eggs calcified, almost spherical, ca. 1.5 mm, laid in spring and summer in batches of between 1 and 47. Time to hatching is 6–24 days, hatching is asynchronous; newly-hatched snails have approximately 1.5 whorls. Analysis of food preferences revealed, that T. hispidus tends to restrict its diet during the life. Generally the youngest snails equally consumed leaves of all four tree species offered (Fraxinus excelsior, Acer pseudoplatanus, Tilia cordata and A. platanoides) whereas adults preferred F. excelsior over A. pseudoplatanus and A. platanoides.  相似文献   
99.
A series of novel 5-phenyl-1H-pyrazole-3-carboxylic acid amide derivatives were designed, synthesized, and their acrosin inhibitory activities in vitro were evaluated. The results of the acrosin inhibitory activity showed that all target compounds were more potent than control TLCK. Compounds AQ-A1, AQ-D3, AQ-D4, AQ-E4 and AQ-E5 exhibited stronger acrosin inhibitory activities than control ISO-1. Especially, compound AQ-E5 displayed the most potent acrosin inhibitory activity in all the compounds, with an IC50 of 0.01 μmol/mL. This study provided a new structural class for the development of novel acrosin inhibitory agents.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号