首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19194篇
  免费   1414篇
  国内免费   1515篇
  22123篇
  2024年   48篇
  2023年   329篇
  2022年   658篇
  2021年   1088篇
  2020年   670篇
  2019年   905篇
  2018年   803篇
  2017年   558篇
  2016年   878篇
  2015年   1154篇
  2014年   1458篇
  2013年   1522篇
  2012年   1810篇
  2011年   1569篇
  2010年   994篇
  2009年   849篇
  2008年   942篇
  2007年   811篇
  2006年   659篇
  2005年   578篇
  2004年   486篇
  2003年   438篇
  2002年   387篇
  2001年   285篇
  2000年   292篇
  1999年   311篇
  1998年   198篇
  1997年   199篇
  1996年   191篇
  1995年   152篇
  1994年   136篇
  1993年   96篇
  1992年   140篇
  1991年   114篇
  1990年   100篇
  1989年   78篇
  1988年   54篇
  1987年   31篇
  1986年   28篇
  1985年   42篇
  1984年   19篇
  1983年   23篇
  1982年   12篇
  1981年   7篇
  1980年   3篇
  1979年   5篇
  1977年   2篇
  1975年   2篇
  1973年   2篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
De-esterification is an important degradation or detoxification mechanism of sulfonylurea herbicide in microbes and plants. However, the biochemical and molecular mechanisms of sulfonylurea herbicide de-esterification are still unknown. In this study, a novel esterase gene, sulE, responsible for sulfonylurea herbicide de-esterification, was cloned from Hansschlegelia zhihuaiae S113. The gene contained an open reading frame of 1,194 bp, and a putative signal peptide at the N terminal was identified with a predicted cleavage site between Ala37 and Glu38, resulting in a 361-residue mature protein. SulE minus the signal peptide was synthesized in Escherichia coli BL21 and purified to homogeneity. SulE catalyzed the de-esterification of a variety of sulfonylurea herbicides that gave rise to the corresponding herbicidally inactive parent acid and exhibited the highest catalytic efficiency toward thifensulfuron-methyl. SulE was a dimer without the requirement of a cofactor. The activity of the enzyme was completely inhibited by Ag(+), Cd(2+), Zn(2+), methamidophos, and sodium dodecyl sulfate. A sulE-disrupted mutant strain, ΔsulE, was constructed by insertion mutation. ΔsulE lost the de-esterification ability and was more sensitive to the herbicides than the wild type of strain S113, suggesting that sulE played a vital role in the sulfonylurea herbicide resistance of the strain. The transfer of sulE into Saccharomyces cerevisiae BY4741 conferred on it the ability to de-esterify sulfonylurea herbicides and increased its resistance to the herbicides. This study has provided an excellent candidate for the mechanistic study of sulfonylurea herbicide metabolism and detoxification through de-esterification, construction of sulfonylurea herbicide-resistant transgenic crops, and bioremediation of sulfonylurea herbicide-contaminated environments.  相似文献   
992.
Gene 2.5 of bacteriophage T7 is an essential gene that encodes a single-stranded DNA-binding protein (gp2.5). Previous studies have demonstrated that the acidic carboxyl terminus of the protein is essential and that it mediates multiple protein-protein interactions. A screen for lethal mutations in gene 2.5 uncovered a variety of essential amino acids, among which was a single amino acid substitution, F232L, at the carboxyl-terminal residue. gp2.5-F232L exhibits a 3-fold increase in binding affinity for single-stranded DNA and a slightly lower affinity for T7 DNA polymerase when compared with wild type gp2.5. gp2.5-F232L stimulates the activity of T7 DNA polymerase and, in contrast to wild-type gp2.5, promotes strand displacement DNA synthesis by T7 DNA polymerase. A carboxyl-terminal truncation of gene 2.5 protein, gp2.5-Delta 26C, binds single-stranded DNA 40-fold more tightly than the wild-type protein and cannot physically interact with T7 DNA polymerase. gp2.5-Delta 26C is inhibitory for DNA synthesis catalyzed by T7 DNA polymerase on single-stranded DNA, and it does not stimulate strand displacement DNA synthesis at high concentration. The biochemical and genetic data support a model in which the carboxyl-terminal tail modulates DNA binding and mediates essential interactions with T7 DNA polymerase.  相似文献   
993.
994.
中国黄颡鱼的线粒体DNA多样性及其分子系统学   总被引:4,自引:0,他引:4  
基于体侧色斑、背鳍前部形态、吻长及尾柄长的差异, Ng和Kottelat(2007)将分布于中国的黄颡鱼群体划为两个物种: 北方群体为Pseudobagrus sinensis, 南方群体为P. fulvidraco。本研究通过对70个黄颡鱼标本相关形态特征的测量及对线粒体cyt b基因序列的分析, 探讨了P. sinensis物种的有效性问题。结果表明: 依据体侧色斑和背鳍前部形态的差异, 可将黄颡鱼分为对应于P. sinensisP. fulvidraco的两种形态类型, 但对尾柄长、吻长的测量发现二者没有差异。对70条cyt b基因序列的分析结果为: 两种鱼类有1个共同的单倍型; 两种鱼类的单系性在系统发育分析中都没有得到重现, 而二者聚在一起形成获得100%支持率的单系群; 两种鱼类群体之间存在持续的基因交流(Nm = 4.7); 两种鱼类在单倍型的巢式支系分析(nested clade analysis, NCA)中没有形成各自独立的进化谱系, 所有的单倍型以不超过5步的突变全部被纳入同一个进化网络中。因此我们认为P. sinensis不是有效物种, 而应被视为黄颡鱼的一种形态类型。基于cyt b基因的序列变异, 本研究对黄颡鱼群体的遗传多样性和种群结构作了初步分析。群体的核苷酸不配对分布及Tajima’sD中性检验表明, 约在10.1-14.1万年前, 黄颡鱼在其分布范围内经历过群体扩张, 推测这可能是导致黄颡鱼群体单倍型多样度高(h = 0.857 ± 0.0014)而核苷酸多样度低( π = 0.0023 ± 0.0003)的主要原因。此外, 分析结果显示黄颡鱼群体缺乏明显的地理结构, 推测原因可能是历史上水系的连通促进了不同地理群体之间的基因交流。  相似文献   
995.
Hu S  Cao W  Lan X  He Y  Lang J  Li C  Hu J  An R  Gao Z  Zhang Y 《Molecular imaging》2011,10(4):227-237
The purpose of this study was to investigate and compare the feasibility of rat sodium iodide symporter (rNIS) and human sodium iodide symporter (hNIS) as reporter genes for noninvasive monitoring of rat bone marrow mesenchymal stem cells (rBMSCs) transplanted into infarcted rat myocardium. rBMSCs were isolated from rat bone marrow. Adenovirus (Ad) was reconstructed to contain rNIS-enhanced green fluorescent protein (eGFP) or hNIS-eGFP. The transfection efficiency of Ad/eGFP/rNIS and Ad/eGFP/hNIS to rBMSCs was measured by real-time polymerase chain reaction, flow cytometry, Western blot, and immunofluorescence staining. The transfected rBMSCs were transplanted into infarcted rat myocardium followed by a single-photon emission computed tomography (SPECT) study with (99m)Tc-pertechnetate as the radiotracer and by autoradiography. The isolated rBMSCs were CD29, CD44, and CD90 positive and CD34, CD45, and CD11b negative. The expression of rNIS and hNIS in the transfected rBMSCs at both gene and protein levels was obviously higher than that without transfection. The myocardium of rats transplanted with transfected rBMSCs could be visualized by SPECT owing to the accumulation of (99m)Tc-pertechnetate in rBMSCs mediated by exogenous NIS genes. The accumulation of (99m)Tc-pertechnetate in myocardium mediated by rNIS was higher than that by hNIS, which was also confirmed by autoradiography. Both rNIS and hNIS are useful reporter genes to monitor BMSCs transplanted into infarcted myocardium in vivo with rNIS being superior to hNIS as the reporter gene.  相似文献   
996.
Qin YY  Li H  Guo XJ  Ye XF  Wei X  Zhou YH  Zhang XJ  Wang C  Qian W  Lu J  He J 《PloS one》2011,6(11):e26946

Background

Taxanes have been extensively used as adjuvant chemotherapy for the treatment of early or operable breast cancer, particularly in high risk, node-negative breast cancer. Previous studies, however, have reported inconsistent findings regarding their clinical efficacy and safety. We investigated disease-free survival (DFS), overall survival (OS), and drug-related toxicities of taxanes by a systematic review and meta-analysis.

Methodology and Principal Findings

We systematically searched PubMed, EMBASE, the Cochrane Center Register of Controlled Trials, proceedings of major meetings, and reference lists of articles for studies conducted between January 1980 and April 2011. Randomized controlled trials (RCTs) comparing chemotherapy with and without taxanes in the treatment of patients with early-stage or operable breast cancer were eligible for inclusion in our analysis. The primary endpoint was DFS. Nineteen RCTs including 30698 patients were identified, including 8426 recurrence events and 3803 deaths. Taxanes administration yielded a 17% reduction of hazard ratio (HR) for DFS (HR = 0.83, 95% CI 0.79–0.88, p<0.001) and a 17% reduction of HR for OS (HR = 0.83, 95% CI 0.77–0.90, p<0.001). For high risk, node-negative breast cancer, the pooled HR also favoured the taxane-based treatment arm over the taxane-free treatment arm (HR = 0.82, 95% CI 0.77–0.87, p = 0.022). A significantly increased rate of neutropenia, febrile neutropenia, fatigue, diarrhea, stomatitis, and oedema was observed in the taxane-based treatment arm.

Conclusions/Significance

Adjuvant chemotherapy with taxanes could reduce the risk of cancer recurrence and death in patients with early or operable breast cancer, although the drug-related toxicities should be balanced. Furthermore, we also demonstrated that patients with high risk, node-negative breast cancer also benefited from taxanes therapy, a result that was not observed in previous studies.  相似文献   
997.
Yang  Xiangdong  Yang  Jing  Wang  Yisheng  He  Hongli  Niu  Lu  Guo  Dongquan  Xing  Guojie  Zhao  Qianqian  Zhong  Xiaofang  Sui  Li  Li  Qiyun  Dong  Yingshan 《Transgenic research》2019,28(1):103-114

Sclerotinia stem rot (SSR), caused by the oxalate-secreting necrotrophic fungal pathogen Sclerotinia sclerotiorum, is one of the devastating diseases that causes significant yield loss in soybean (Glycine max). Until now, effective control of the pathogen is greatly limited by a lack of strong resistance in available commercial soybean cultivars. In this study, transgenic soybean plants overexpressing an oxalic acid (OA)-degrading oxalate oxidase gene OXO from wheat were generated and evaluated for their resistance to S. sclerotiorum. Integration and expression of the transgene were confirmed by Southern and western blot analyses. As compared with non-transformed (NT) control plants, the transgenic lines with increased oxalate oxidase activity displayed significantly reduced lesion sizes, i.e., by 58.71–82.73% reduction of lesion length in a detached stem assay (T3 and T4 generations) and 76.67–82.0% reduction of lesion area in a detached leaf assay (T4 generation). The transgenic plants also showed increased tolerance to the externally applied OA (60 mM) relative to the NT controls. Consecutive resistance evaluation further confirmed an enhanced and stable resistance to S. sclerotiorum in the T3 and T4 transgenic lines. Similarly, decreased OA content and increased hydrogen peroxide (H2O2) levels were also observed in the transgenic leaves after S. sclerotiorum inoculation. Quantitative real-time polymerase chain reaction analysis revealed that the expression level of OXO reached a peak at 1 h and 4 h after inoculation with S. sclerotiorum. In parallel, a significant up-regulation of the hypersensitive response-related genes GmNPR1-1, GmNPR1-2, GmSGT1, and GmRAR occurred, eventually induced by increased release of H2O2 at the infection sites. Interestingly, other defense-related genes such as salicylic acid-dependent genes (GmPR1, GmPR2, GmPR3, GmPR5, GmPR12 and GmPAL), and ethylene/jasmonic acid-dependent genes (GmAOS, GmPPO) also exhibited higher expression levels in the transgenic plants than in the NT controls. Our results demonstrated that overexpression of OXO enhances SSR resistance by degrading OA secreted by S. sclerotiorum and increasing H2O2 levels, and eliciting defense responses mediated by multiple signaling pathways.

  相似文献   
998.
我们在原地测量了840米和2150米两地种植的冬小麦“凤麦13”苗期、拔节期、抽穗期和灌浆初期的光合作用速率的日变化,光合作用速率对光量子通量密度的反应和CO_2补偿点。结果表明生育前期(苗期和拔节期)和后期(抽穗期和灌浆初期)光合作用速率的一日内变化形式相反,而且低地种植的冬小麦其光合速率在前期高于高地种植的,后期高地种植的冬小麦有比低地高的光合速率。光饱和点基本相同。光补偿点在生育前期高地小麦比低地小麦低,而后期低地小麦的的光补偿点减低,并低于高地小麦的。高地小麦的光补偿点比较稳定。CO_2补偿点高地小麦比低地的较低。并就两地气候条件讨论了上述差异。  相似文献   
999.
Adipose tissue hypoxia is an early phenotype in obesity, associated with macrophage infiltration and local inflammation. Here we test the hypothesis that adipocytes in culture respond to a hypoxic environment with the release of pro-inflammatory factors that stimulate macrophage migration and cause muscle insulin resistance. 3T3-L1 adipocytes cultured in a 1% O2 atmosphere responded with a classic hypoxia response by elevating protein expression of HIF-1α. This was associated with elevated mRNA expression and peptide release of cytokines TNFα, IL-6 and the chemokine monocyte chemoattractant protein-1 (MCP-1). The mRNA and protein expression of the anti-inflammatory adipokine adiponectin was reduced. Conditioned medium from hypoxia-treated adipocytes (CM-H), inhibited insulin-stimulated and raised basal cell surface levels of GLUT4myc stably expressed in C2C12 myotubes. Insulin stimulation of Akt and AS160 phosphorylation, key regulators of GLUT4myc exocytosis, was markedly impaired. CM-H also caused activation of JNK and S6K, and elevated serine phosphorylation of IRS1 in the C2C12 myotubes. These effects were implicated in reducing propagation of insulin signaling to Akt and AS160. Heat inactivation of CM-H reversed its dual effects on GLUT4myc traffic in muscle cells. Interestingly, antibody-mediated neutralization of IL-6 in CM-H lowered its effect on both the basal and insulin-stimulated cell surface GLUT4myc compared to unmodified CM-H. IL-6 may have regulated GLUT4myc traffic through its action on AMPK. Additionally, antibody-mediated neutralization of MCP-1 partly reversed the inhibition of insulin-stimulated GLUT4myc exocytosis caused by unmodified CM-H. In Transwell co-culture, hypoxia-challenged adipocytes attracted RAW 264.7 macrophages, consistent with elevated release of MCP-1 from adipocytes during hypoxia. Neutralization of MCP-1 in adipocyte CM-H prevented macrophage migration towards it and partly reversed the effect of CM-H on insulin response in muscle cells. We conclude that adipose tissue hypoxia may be an important trigger of its inflammatory response observed in obesity, and the elevated chemokine MCP-1 may contribute to increased macrophage migration towards adipose tissue and subsequent decreased insulin responsiveness of glucose uptake in muscle.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号