首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   168篇
  免费   7篇
  175篇
  2021年   1篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   14篇
  2013年   5篇
  2012年   2篇
  2011年   7篇
  2010年   9篇
  2009年   5篇
  2008年   10篇
  2007年   6篇
  2006年   6篇
  2005年   2篇
  2004年   5篇
  2003年   3篇
  2002年   4篇
  2001年   2篇
  2000年   4篇
  1999年   9篇
  1998年   5篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   7篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   4篇
  1983年   2篇
  1982年   4篇
  1981年   5篇
  1980年   2篇
  1979年   4篇
  1978年   4篇
  1977年   3篇
  1976年   2篇
  1975年   3篇
  1974年   1篇
  1973年   4篇
  1972年   1篇
  1970年   2篇
  1968年   1篇
  1966年   1篇
排序方式: 共有175条查询结果,搜索用时 0 毫秒
61.
We sought to determine whether gut-derived microbial factors influence the hepatic or intestinal inflammatory response to hemorrhagic shock and resuscitation (HS/R). Conventional and gnotobiotic mice contaminated with a defined microbiota without gram-negative bacteria were subjected to either a sham procedure or HS/R. Tissue samples were obtained 4 h later for assessing ileal mucosal permeability to FITC dextran and hepatic and ileal mucosal steady-state IL-6, inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, and TNF mRNA levels. Whereas HS/R significantly increased ileal mucosal permeability in conventional mice, this effect was not apparent in gnotobiotic animals. HS/R markedly increased hepatic mRNA levels for several proinflammatory genes in both conventional and gnotobiotic mice. HS/R increased ileal mucosal IL-6 and COX-2 mRNA expression in conventional but not gnotobiotic mice. If gnotobiotic mice were contaminated with Escherichia coli C25, HS/R increased ileal mucosal permeability and upregulated expression of IL-6 and COX-2. These data support the view that the hepatic inflammatory response to HS/R is largely independent of the presence of potentially pathogenic gram-negative bacteria colonizing the gut, whereas the local mucosal response to HS/R is profoundly influenced by the microbial ecology within the lumen during and shortly after the period of hemorrhage.  相似文献   
62.
The respiratory metabolism in larvae of the Antarctic fly, Belgica antarctica Jacobs (Diptera: Chironomidae) was investigated at Palmer Station, Anvers Island (64°46′S, 64°03′W). Oxygen consumption was linearly related to temperature from 0 to 20°C, respectively, 49 and 338 nl/mg live wt/hr. Maintenance at 0 and 10°C for 8 days had no differential effect on the metabolic rate, suggesting that larvae lack the ability for compensatory acclimation. A comparison of standard metabolism for polar and temperate chironomids revealed no elevation of metabolic rate in polar forms. However, polar species exhibited lower activation energies than temperate forms indicating that the respiratory metabolism of polar chironomids is relatively temperature independent.  相似文献   
63.
A new concept in cryopreservation solution design was developed that focuses on the use of an intracellular-type, hypothermic maintenance medium coupled with additives that inhibit cryopreservation-induced apoptosis. HypoThermosol' (HTS), a hypothermic (4 degrees C) maintenance medium utilized in the long-term storage of cell, tissue, and organ systems, was tested for cryoprotective capability on a renal cell line (Madin-Darby Canine Kidney cells). HTS and HTS derivatives were tested against conventional cell culture medium (Dulbecco's Minimal Essential medium, DME) as the cryoprotectant carrier solution because (1) cells are exposed to an extended state of hypothermia during the freeze-thaw process, and (2) HTS is designed to protect cells exposed to a hypothermic state. Cells separately cryopreserved in either HTS or DME + 5% dimethyl sulfoxide (DMSO) yielded equivalent 24-h postthaw survival (approximately 30%) and 5-d recovery (approximately 90%). Cells cryopreserved in CryoStor CS 5, a HTS derivative containing 5% DMSO, yielded approximately 75% 24-h postthaw survival and recovery to 100% within 3 d. DNA gel electrophoresis was performed to determine the mechanisms of cell death contributing to cryopreservation failure. Cells preserved in DME (DMSO-free) died primarily through necrosis, whereas cells preserved in either DME + 5% DMSO, HTS, or CryoStor CS 5 died through a combination of apoptosis and necrosis. This observation led to the inclusion of an apoptotic inhibitor designed to improve cryopreservation outcome. MDCK cells cryopreserved in CryoStor CS 5 supplemented with an apoptotic inhibitor (Caspase I Inhibitor V), hereafter termed CryoStor CS 5N, resulted in a 24-h postthaw survival and recovery rate exceeding that of any other cryoprotective solution tested (85%). We conclude that: (1) the use of HTS (a dextran-based, intracellular-type solution) without DMSO can yield postthaw viability equivalent to that of standard DMSO-based cryopreservation methods, (2) postthaw viability can be significantly increased through the use of an intracellular-type solution in conjunction with DMSO, (3) the use of HTS allows for cryopreservation to be accomplished with reduced levels of cryoprotectants, and (4) the regulation of apoptosis is essential for the improvement of cryopreservation outcome.  相似文献   
64.
65.
Although the presence of antifreeze and ice nucleating agents in the hemolymph of insects has been well documented, there have been no reports of either of these types of agent in vertebrates. The technique of differential scanning calorimetry was used to examine the blood, serum, and plasma of a freeze-tolerant frog, Rana sylvatica, for the presence of antifreeze protein activity. Results demonstrate the absence of antifreeze protein but the presence of an ice nucleating agent that may serve as a functional component of the overwintering strategy of this species. Ice nucleating activity was detected in samples of cell-free blood, serum, and plasma, suggesting that the agent is a soluble component and possibly plasma protein. To our knowledge, the identification of ice nucleating activity in this freeze-tolerant vertebrate is novel.  相似文献   
66.
67.
68.
Betaretroviruses exist in endogenous and exogenous forms in hosts that are widely distributed and evolutionarily distantly related. Here we report the discovery and characterization of several previously unknown betaretrovirus groups in the genomes of Mus musculus and Rattus norvegicus. Each group contains both mouse and rat elements, and several of the groups are more closely related to previously known betaretroviruses from nonmurine hosts. Some of the groups also include members from hosts which were not previously known to harbor betaretroviruses, such as the gray mouse lemur (Microcebus murinus) and Seba's short-tailed bat (Carollia perspicillata). Some of the mouse and rat elements possess intact open reading frames for gag, pro, pol, and/or env genes and display characteristics of having retrotransposed recently. We propose a model whereby betaretroviruses have been evolving within the genomes of murid rodents for at least the last 20 million years and, subsequent to (or concomitant with) the global spread of their murid hosts, have occasionally been transmitted to other species.  相似文献   
69.
Nuclear and mitochondrial genomes combine in ALR/Lt mice to produce systemically elevated defenses against free radical damage, rendering these mice resistant to immune-mediated pancreatic islet destruction. We analyzed the mechanism whereby isolated islets from ALR mice resisted proinflammatory stress mediated by combined cytokines (IL-1beta, TNF-alpha, and IFN-gamma) in vitro. Such damage entails both superoxide and NO radical generation, as well as peroxynitrite, resulting from their combination. In contrast to islets from other mouse strains, ALR islets expressed constitutively higher glutathione reductase, glutathione peroxidase, and higher ratios of reduced to oxidized glutathione. Following incubation with combined cytokines, islets from control strains produced significantly higher levels of hydrogen peroxide and NO than islets from ALR mice. Nitrotyrosine was generated in NOD and C3H/HeJ islets but not by ALR islets. Western blot analysis showed that combined cytokines up-regulated the NF-kappaB inducible NO synthase in NOD-Rag and C3H/HeJ islets but not in ALR islets. This inability of cytokine-treated ALR islets to up-regulate inducible NO synthase and produce NO correlated both with reduced kinetics of IkappaB degradation and with markedly suppressed NF-kappaB p65 nuclear translocation. Hence, ALR/Lt islets resist cytokine-induced diabetogenic stress through enhanced dissipation and/or suppressed formation of reactive oxygen and nitrogen species, impaired IkappaB degradation, and blunted NF-kappaB activation. Nitrotyrosylation of beta cell proteins may generate neoantigens; therefore, resistance of ALR islets to nitrotyrosine formation may, in part, explain why ALR mice are resistant to type 1 diabetes when reconstituted with a NOD immune system.  相似文献   
70.
The early adaptive evolution of calmodulin   总被引:7,自引:0,他引:7  
Interaction between gene duplication and natural selection in molecular evolution was investigated utilizing a phylogenetic tree constructed by the parsimony procedure from amino acid sequences of 50 calmodulin- family protein members. The 50 sequences, belonging to seven protein lineages related by gene duplication (calmodulin itself, troponin-C, alkali and regulatory light chains of myosin, parvalbumin, intestinal calcium-binding protein, and glial S-100 phenylalanine-rich protein), came from a wide range of eukaryotic taxa and yielded a denser tree (more branch points within each lineage) than in earlier studies. Evidence obtained from the reconstructed pattern of base substitutions and deletions in these ancestral loci suggests that, during the early history of the family, selection acted as a transforming force on expressed genes among the duplicates to encode molecular sites with new or modified functions. In later stages of descent, however, selection was a conserving force that preserved the structures of many coadapted functional sites. Each branch of the family was found to have a unique average tempo of evolutionary change, apparently regulated through functional constraints. Proteins whose functions dictate multiple interaction with several other macromolecules evolved more slowly than those which display fewer protein-protein and protein-ion interactions, e.g., calmodulin and next troponin-C evolved at the slowest average rates, whereas parvalbumin evolved at the fastest. The history of all lineages, however, appears to be characterized by rapid rates of evolutionary change in earlier periods, followed by slower rates in more recent periods. A particularly sharp contrast between such fast and slow rates is found in the evolution of calmodulin, whose rate of change in earlier eukaryotes was manyfold faster than the average rate over the past 1 billion years. In fact, the amino acid replacements in the nascent calmodulin lineage occurred at residue positions that in extant metazoans are largely invariable, lending further support to the Darwinian hypothesis that natural selection is both a creative and a conserving force in molecular evolution.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号