首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   282篇
  免费   4篇
  286篇
  2017年   3篇
  2015年   2篇
  2014年   7篇
  2013年   12篇
  2012年   8篇
  2011年   21篇
  2010年   19篇
  2009年   25篇
  2008年   21篇
  2007年   30篇
  2006年   19篇
  2005年   16篇
  2004年   8篇
  2003年   3篇
  2002年   2篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   4篇
  1996年   6篇
  1995年   6篇
  1994年   4篇
  1993年   5篇
  1992年   5篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   5篇
  1982年   3篇
  1981年   5篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   5篇
  1976年   1篇
  1975年   2篇
  1973年   1篇
  1972年   5篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1966年   1篇
  1964年   1篇
  1954年   1篇
排序方式: 共有286条查询结果,搜索用时 15 毫秒
61.
This paper examines carbon stocks and their relative balance in terrestrial ecosystems simulated by Biome‐BGC, LPJ, and CASA in an ensemble model experiment conducted using the Terrestrial Observation and Prediction System. We developed the Hierarchical Framework for Diagnosing Ecosystem Models to separate the simulated biogeochemistry into a cascade of functional tiers and examine their characteristics sequentially. The analyses indicate that the simulated biomass is usually two to three times higher in Biome‐BGC than LPJ or CASA. Such a discrepancy is mainly induced by differences in model parameters and algorithms that regulate the rates of biomass turnover. The mean residence time of biomass in Biome‐BGC is estimated to be 40–80 years in temperate/moist climate regions, while it mostly varies between 5 and 30 years in CASA and LPJ. A large range of values is also found in the simulated soil carbon. The mean residence time of soil carbon in Biome‐BGC and LPJ is ~200 years in cold regions, which decreases rapidly with increases of temperature at a rate of ~10 yr °C?1. Because long‐term soil carbon pool is not simulated in CASA, its corresponding mean residence time is only about 10–20 years and less sensitive to temperature. Another key factor that influences the carbon balance of the simulated ecosystem is disturbance caused by wildfire, for which the algorithms vary among the models. Because fire emissions are balanced by net ecosystem production (NEP) at steady states, magnitudes, and spatial patterns of NEP vary significantly as well. Slight carbon imbalance may be left by the spin‐up algorithm of the models, which adds uncertainty to the estimated carbon sources or sinks. Although these results are only drawn on the tested model versions, the developed methodology has potential for other model exercises.  相似文献   
62.
Whereas humans and certain birds experience an abrupt change in locomotor dynamics when shifting from walks to runs, a smooth walk–run transition characterizes many ground-dwelling birds. This study defines the biomechanical distinction between walks and runs in the Elegant-crested Tinamou Eudromia elegans using ground reaction forces. Three birds were filmed at 250 Hz from a lateral view as they moved over a force plate built into a trackway. Centre of mass mechanics and kinematic variables were analysed in 81 steady-speed trials that represented a speed range from 0.66 to 2.78 m/s. E. elegans undergoes two speed-related changes in locomotor mechanics. The first is a shift from walking strides that utilize vaulting mechanics to low-speed runs that exhibit bouncing mechanics; this transition occurs at Froude numbers between 0.4 and 0.6. Such low-speed runs exhibit duty factors exceeding 0.5 and, hence, lack an aerial phase between steps. The second transition, from grounded running to aerial running, occurs when duty factors decrease below 0.5. Grounded running in birds may enhance vision by stabilizing visual stimuli over the retina. The eventual incorporation of an aerial phase during running enables increased locomotor speeds primarily through longer stride lengths.  相似文献   
63.
Abstract: Bennettites are an abundant and frequently well‐preserved component of many Mesozoic fossil floras, often playing an important ecological role in flood plain vegetation communities. During a recent study focusing on stomatal indices of Triassic–Jurassic fossil plants, it became evident that the leaf fragments of two bennettite genera Anomozamites Schimper (1870) emend. Harris (1969) and Pterophyllum Brongniart (1825) display a significant overlap of leaf shape as well as cuticular characters. Owing to the preference of recognition of single taxa (ideally species) for the stomatal method, we use a database of 70 leaf fragments of Anomozamites and Pterophyllum compressions from five isotaphonomic Late Triassic sedimentary beds of Astartekløft in East Greenland to test whether leaf and cuticle fragments of the two genera can be separated using a range of quantitative and qualitative morphological and statistical analyses. None of the observed characters – including stomatal frequencies – could be applied to separate the fragments of the two genera into well‐defined groups. Our results therefore indicate that fragmented material and dispersed cuticles cannot be utilized to distinguish between Anomozamites or Pterophyllum at the genus level, but that instead these cuticle fragments may be used interchangeably as stomatal proxies. Classification of fossil leaves into either of these genera is thus only possible given adequate preservation of macro‐morphology and is not possible based solely on cuticle morphology. We suggest that this large inter‐ and intra‐generic morphological variation in both leaf and cuticle traits within Anomozamites and Pterophyllum may be related to the bennettites’ role as understory plants, experiencing a range of micro‐environmental conditions, perhaps depending mainly on sun exposure. Based on the results obtained in this study, we conclude that Anomozamites and Pterophyllum cuticle fragments can be employed interchangeably in palaeo [CO2] reconstructions based on the stomatal method, thus potentially annexing a plethora of bennettitalean fossil plant material as CO2 proxies, including dispersed cuticles.  相似文献   
64.
65.
Abstract: We related winter habitat selection by Canada lynx (Lynx canadensis), relative abundance of snowshoe hares (Lepus americanus), and understory stem densities to evaluate whether lynx select stands with the greatest snowshoe hare densities or the greatest prey accessibility. Lynx (3 F, 3 M) selected tall (4.4-7.3 m) regenerating clear-cuts (11-26 yr postharvest) and established partially harvested stands (11-21 yr postharvest) and selected against short (3.4-4.3 m) regenerating clear-cuts, recent partially harvested stands (1-10 yr), mature second-growth stands (>40 yr), and roads and their edges (30 m on either side of roads). Lynx selected stands that provided intermediate to high hare density and intermediate cover for hares (i.e., prey access) but exhibited lower relative preference for stand types with highest hare densities where coniferous saplings exceeded 14,000 stems/ha.  相似文献   
66.
Removal of an ear from a tiller of a wheat plant growing inthe field did not result in any marked change in the net photosyntheticrate of the subtending flag leaf, even during the period whenthe ear would normally have received large amounts of assimilatefrom the flag leaf. Following ear removal, there was an increasein the amount of ethanol-soluble and ethanol-insoluble carbohydratesin the remaining organs of the tiller. 14C labelling studiesshowed that a new pattern of translocation was established within2–3 days of ear removal, and the tiller exported assimilateto other tillers on the plant, and possibly to the roots.  相似文献   
67.
We describe the isolation and development of 16 polymorphic tetranucleotide microsatellite loci for the endangered Oregon chub (Oregonichthys crameri). Two loci appear to be duplicated. For the remaining 14 loci, we observed between three and 19 alleles per locus in a sample of 42 fish. Thirteen of these loci were also polymorphic in the closely related Umpqua chub (O. kalawatseti). These loci will aid in our understanding of the molecular ecology and conservation of these two species.  相似文献   
68.
69.
Dicynodonts were the most diverse and abundant herbivorous therapsids of the Permo‐Triassic. They include Lystrosaurus, one of the few taxa known to survive the end‐Permian extinction and the most abundant tetrapod during the Early Triassic postextinction recovery. Explanations for the success of Lystrosaurus and other dicynodonts remain controversial. This study presents an assessment of dicynodont growth patterns using bone histology, with special focus on taxa associated with the end‐Permian extinction event. Bone histological analysis reveals a high cortical thickness throughout the clade, perhaps reflecting a phylogenetic constraint. Growth rings are absent early in ontogeny, and combined with high vascular density, indicate rapid, sustained growth up to the subadult stage. Extraordinarily enlarged vascular channels are present in the midcortex of many dicynodonts, including adults, and may have facilitated a more efficient assimilation of nutrients and rapid bone growth compared to other therapsids. Both increased channel density and enlarged vascular channels evolved at or near the base of major radiations of dicynodonts, implying that the changes in growth and life history they represent may have been key to the success of dicynodonts. Furthermore, this exceptionally rapid growth to adulthood may have contributed to the survival of Lystrosaurus during the end‐Permian extinction and its dominance during the postextinction recovery period. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 160 , 341–365.  相似文献   
70.
Crop‐wild hybridization has been documented in many cultivated species, but the ecological and genetic factors that influence the likelihood or rate that cultivar alleles will introgress into wild populations are poorly understood. Seed predation is one factor that could mitigate the spread of otherwise advantageous cultivar alleles into the wild by reducing seedling recruitment of crop‐like individuals in hybrid populations. Seed predation has previously been linked to several seed characters that differ between cultivated and wild sunflower, such as seed size and oil content. In this study, seed morphological and nutritional characters were measured in a segregating population of sunflower crop‐wild hybrids and wild and cultivated lines. Seed predation rates among lines were then assessed in the field. The relationship between seed predation and seed characters was investigated and quantitative trait loci (QTL) were mapped for all traits. There was no effect of seed type (hybrid vs. parents) on seed predation, although a trend toward more early predation of wild seeds was observed. Within the hybrids, seed predators preferred seeds that contained more oil and energy but were lower in fibre. The relationship between seed predation and oil content was supported by co‐localized QTL for these traits on one linkage group. These results suggest that oil content may be a more important determinant of seed predation than seed size and provide molecular genetic evidence for this relationship. The cultivar allele was also found to increase predation at all QTL, indicating that post‐dispersal seed predation may mitigate the spread of cultivar alleles into wild populations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号