首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25296篇
  免费   15499篇
  国内免费   2篇
  40797篇
  2023年   12篇
  2022年   85篇
  2021年   387篇
  2020年   2182篇
  2019年   3713篇
  2018年   3813篇
  2017年   4091篇
  2016年   4073篇
  2015年   3977篇
  2014年   3611篇
  2013年   4037篇
  2012年   1696篇
  2011年   1415篇
  2010年   2995篇
  2009年   1757篇
  2008年   632篇
  2007年   226篇
  2006年   224篇
  2005年   273篇
  2004年   250篇
  2003年   243篇
  2002年   233篇
  2001年   249篇
  2000年   180篇
  1999年   134篇
  1998年   18篇
  1997年   21篇
  1996年   18篇
  1995年   10篇
  1994年   15篇
  1993年   7篇
  1992年   17篇
  1991年   11篇
  1990年   11篇
  1989年   10篇
  1988年   6篇
  1986年   5篇
  1985年   5篇
  1982年   12篇
  1981年   6篇
  1980年   6篇
  1979年   11篇
  1978年   10篇
  1977年   5篇
  1976年   6篇
  1975年   12篇
  1974年   6篇
  1973年   6篇
  1972年   9篇
  1971年   15篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
102.
Ovule primordia formation is a complex developmental process with a strong impact on the production of seeds. In Arabidopsis this process is controlled by a gene network, including components of the signalling pathways of auxin, brassinosteroids (BRs) and cytokinins. Recently, we have shown that gibberellins (GAs) also play an important role in ovule primordia initiation, inhibiting ovule formation in both Arabidopsis and tomato. Here we reveal that BRs also participate in the control of ovule initiation in tomato, by promoting an increase on ovule primordia formation. Moreover, molecular and genetic analyses of the co‐regulation by GAs and BRs of the control of ovule initiation indicate that two different mechanisms occur in tomato and Arabidopsis. In tomato, GAs act downstream of BRs. BRs regulate ovule number through the downregulation of GA biosynthesis, which provokes stabilization of DELLA proteins that will finally promote ovule primordia initiation. In contrast, in Arabidopsis both GAs and BRs regulate ovule number independently of the activity levels of the other hormone. Taken together, our data strongly suggest that different molecular mechanisms could operate in different plant species to regulate identical developmental processes even, as for ovule primordia initiation, if the same set of hormones trigger similar responses, adding a new level of complexity.  相似文献   
103.
104.
105.
Pathogen‐mediated balancing selection is commonly considered to play an important role in the maintenance of genetic diversity, in particular in immune genes. However, the factors that may influence which immune genes are the targets of such selection are largely unknown. To address this, here we focus on Pattern Recognition Receptor (PRR) signalling pathways, which play a key role in innate immunity. We used whole‐genome resequencing data from a population of bank voles (Myodes glareolus) to test for associations between balancing selection, pleiotropy and gene function in a set of 123 PRR signalling pathway genes. To investigate the effect of gene function, we compared genes encoding (a) receptors for microbial ligands versus downstream signalling proteins, and (b) receptors recognizing components of microbial cell walls, flagella and capsids versus receptors recognizing features of microbial nucleic acids. Analyses based on the nucleotide diversity of full coding sequences showed that balancing selection primarily targeted receptor genes with a low degree of pleiotropy. Moreover, genes encoding receptors recognizing components of microbial cell walls etc. were more important targets of balancing selection than receptors recognizing nucleic acids. Tests for localized signatures of balancing selection in coding and noncoding sequences showed that such signatures were mostly located in introns, and more evenly distributed among different functional categories of PRR pathway genes. The finding that signatures of balancing selection in full coding sequences primarily occur in receptor genes, in particular those encoding receptors for components of microbial cell walls etc., is consistent with the idea that coevolution between hosts and pathogens is an important cause of balancing selection on immune genes.  相似文献   
106.
In intraspecific competition, the sex of competing individuals is likely to be important in determining the outcome of competitive interactions and the way exposure to conspecifics during development influences adult fitness traits. Previous studies have explored differences between males and females in their response to intraspecific competition. However, few have tested how the sex of the competitors, or any interactions between focal and competitor sex, influences the nature and intensity of competition. We set up larval seed beetles Callosobruchus maculatus to develop either alone or in the presence of a male or female competitor and measured a suite of traits: development time, emergence weight; male ejaculate mass, copulation duration, and lifespan; and female lifetime fecundity, offspring egg–adult survival, and lifespan. We found effects of competition and competitor sex on the development time and emergence weight of both males and females, and also of an interaction between focal and competitor sex: Females emerged lighter when competing with another female, while males did not. There was little effect of larval competition on male and female adult fitness traits, with the exception of the effect of a female competitor on a focal female's offspring survival rate. Our results highlight the importance of directly measuring the effects of competition on fitness traits, rather than distant proxies for fitness, and suggest that competition with the sex with the greater resource requirements (here females) might play a role in driving trait evolution. We also found that male–male competition during development resulted in shorter copulation times than male–female competition, a result that remained when controlling for the weight of competitors. Although it is difficult to definitively tease apart the effects of social environment and access to resources, this result suggests that something about the sex of competitors other than their size is driving this pattern.  相似文献   
107.
Self‐incompatibility (SI) is the main mechanism that favors outcrossing in plants. By limiting compatible matings, SI interferes in fruit production and breeding of new cultivars. In the Oleeae tribe (Oleaceae), an unusual diallelic SI system (DSI) has been proposed for three distantly related species including the olive (Olea europaea), but empirical evidence has remained controversial for this latter. The olive domestication is a complex process with multiple origins. As a consequence, the mixing of S‐alleles from two distinct taxa, the possible artificial selection of self‐compatible mutants and the large phenological variation of blooming may constitute obstacles for deciphering SI in olive. Here, we investigate cross‐genotype compatibilities in the Saharan wild olive (O. e. subsp. laperrinei). As this taxon was geographically isolated for thousands of years, SI should not be affected by human selection. A population of 37 mature individuals maintained in a collection was investigated. Several embryos per mother were genotyped with microsatellites in order to identify compatible fathers that contributed to fertilization. While the pollination was limited by distance inside the collection, our results strongly support the DSI hypothesis, and all individuals were assigned to two incompatibility groups (G1 and G2). No self‐fertilization was observed in our conditions. In contrast, crosses between full or half siblings were frequent (ca. 45%), which is likely due to a nonrandom assortment of related trees in the collection. Finally, implications of our results for orchard management and the conservation of olive genetic resources are discussed.  相似文献   
108.
It is unclear how historical adaptation versus maladaptation in a prior environment affects population evolvability in a novel habitat. Prior work showed that vesicular stomatitis virus (VSV) populations evolved at constant 37°C improved in cellular infection at both 29°C and 37°C; in contrast, those evolved under random changing temperatures between 29°C and 37°C failed to improve. Here, we tested whether prior evolution affected the rate of adaptation at the thermal‐niche edge: 40°C. After 40 virus generations in the new environment, we observed that populations historically evolved at random temperatures showed greater adaptability. Deep sequencing revealed that most of the newly evolved mutations were de novo. Also, two novel evolved mutations in the VSV glycoprotein and replicase genes tended to co‐occur in the populations previously evolved at constant 37°C, whereas this parallelism was not seen in populations with prior random temperature evolution. These results suggest that prior adaptation under constant versus random temperatures constrained the mutation landscape that could improve fitness in the novel 40°C environment, perhaps owing to differing epistatic effects of new mutations entering genetic architectures that earlier diverged. We concluded that RNA viruses maladapted to their previous environment could “leapfrog” over counterparts of higher fitness, to achieve faster adaptability in a novel environment.  相似文献   
109.
Rapid evolution can influence the ecology of populations, communities, and ecosystems, but the importance of evolution for ecological dynamics remains unclear, largely because the contexts in which evolution is powerful are poorly resolved. Here, we carry out a large observational study to test hypotheses about context dependency of eco‐evolutionary patterns previously identified on the stick insect Timema cristinae. Experiments and observations conducted in 2011 and 2012 documented predator‐mediated negative effects of camouflage maladaptation (i.e., evolutionary dynamics) on: (a) T. cristinae abundance and, (b) species richness and abundance of other arthropods. Here we show that camouflage maladaptation does not correlate with T. cristinae abundance and, instead, is associated with increased abundance and species richness of cohabitating arthropods. We furthermore find that plants with high levels of Timema maladaptation tend to have higher foliar nitrogen, that is, higher nutritional value, and more positive mass‐abundance slopes in the coexisting arthropod communities. We propose explanations for the observed contrasting results, such as negative density‐ and frequency‐dependent selection, feedbacks between herbivore abundance and plant nutritional quality, and common effects of predation pressure on selection and prey abundance. Our results demonstrate the utility of observational studies to assess the context dependency of eco‐evolutionary dynamics patterns and provide testable hypotheses for future work.  相似文献   
110.
Cornus kousa (Asian dogwood), an East Asia native tree, is the most economically important species of the dogwood genus, owing to its desirable horticultural traits and ability to hybridize with North America‐native dogwoods. To assess the species genetic diversity and to better inform the ongoing and future breeding efforts, we assembled an herbarium and arboretum collection of 131 noncultivated C. kousa specimens. Genotyping and capillary electrophoresis analyses of our C. kousa collection with the newly developed genic and published nuclear genomic microsatellites permitted assessment of genetic diversity and evolutionary history of the species. Regardless of the microsatellite type used, the study yielded generally similar insights into the C. kousa diversity with subtle differences deriving from and underlining the marker used. The accrued evidence pointed to the species distinct genetic pools related to the plant country of origin. This can be helpful in the development of the commercial cultivars for this important ornamental crop with increased pyramided utility traits. Analyses of the C. kousa evolutionary history using the accrued genotyping datasets pointed to an unsampled ancestor population, possibly now extinct, as per the phylogeography of the region. To our knowledge, there are few studies utilizing the same gDNA collection to compare performance of genomic and genic microsatellites. This is the first detailed report on C. kousa species diversity and evolutionary history inference.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号