首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1438篇
  免费   246篇
  2022年   11篇
  2021年   30篇
  2020年   16篇
  2019年   11篇
  2018年   17篇
  2017年   20篇
  2016年   32篇
  2015年   44篇
  2014年   49篇
  2013年   55篇
  2012年   96篇
  2011年   75篇
  2010年   50篇
  2009年   60篇
  2008年   50篇
  2007年   57篇
  2006年   39篇
  2005年   59篇
  2004年   60篇
  2003年   43篇
  2002年   42篇
  2001年   37篇
  2000年   38篇
  1999年   35篇
  1998年   29篇
  1997年   18篇
  1996年   15篇
  1995年   21篇
  1994年   21篇
  1993年   19篇
  1992年   26篇
  1991年   35篇
  1990年   25篇
  1989年   31篇
  1988年   23篇
  1987年   27篇
  1986年   24篇
  1985年   18篇
  1984年   24篇
  1983年   21篇
  1982年   15篇
  1979年   23篇
  1978年   15篇
  1974年   10篇
  1973年   15篇
  1972年   18篇
  1971年   10篇
  1970年   10篇
  1969年   12篇
  1967年   12篇
排序方式: 共有1684条查询结果,搜索用时 15 毫秒
81.
82.
HIV use the CD4 molecule as their primary cellular receptor. Residues in the N-terminal domain (D1) of CD4 are crucial to HIV attachment through the gp120 envelope component. However, other regions of CD4 appear to be required subsequently for virus- and cell-cell fusion. Little is understood of the post-binding steps which may differ between HIV variants. We report a novel anti-CD4 mAb that does not block CD4/gp120 binding, but that does efficiently block both viral infection and cell-cell syncytia formation, and define its contact site as residues in CD4 D2 using both mouse/human CD4 chimeras and CD4 substitution mutants. We also investigated the basis for its antiviral effect. Using the CD4 D2 specific mAb, we identify another conserved step in HIV infection, as evidenced by its ability to neutralize a broad range of primary isolates and T cell-line passaged strains. Monovalent forms of the mAb were used to determine if its activity was due to masking of the D2 epitope, to steric inhibition, or bivalency. Our data indicate that both binding site and bivalency of the mAb underlie its potency. The need for bivalency is not simply explained by affinity, because monovalent forms can displace the intact mAb and reverse its protective effect. These results provide evidence that binding of the D2-specific mAb prevents structural alterations necessary for membrane fusion.  相似文献   
83.
84.
Nanofiltration assures that protein therapeutics are free of adventitious agents such as viruses. Nanofilter pores must allow passage of protein drugs but be small enough to retain viruses. Five nanofilters have been evaluated to identify those that can be used interchangeably to yield a high purity Coagulation Factor IX product. When product preparations prior to nanofiltration were analyzed using electrophoresis, Western blot, liquid chromatography – tandem mass spectrometry and size exclusion HPLC, factor IX, inter – α – trypsin inhibitor and C4b binding protein (C4BP) were observed. C4BP was removed from product by all five nanofilters when nanofiltration was performed at physiological ionic strength. However, at high ionic strength, C4BP was removed by only two nanofilters. HPLC indicated that the Stokes radius of C4BP was larger at low ionic strength than at high ionic strength. The results suggest that C4BP exists in an open conformation at physiological ionic strength and is removed by nanofiltration whereas, at high ionic strength, the protein collapses to an extent that allows passage through some nanofilters. Manufacturers should be aware that protein contaminants in other nanofiltered protein drugs could behave similarly and conditions of nanofiltration must be evaluated to ensure consistent product purity.  相似文献   
85.
86.
The microvascular endothelial network is essential for bone formation and regeneration. In this context, endothelial cells not only support vascularization but also influence bone physiology via cell contact‐dependent mechanisms. In order to improve vascularization and osteogenesis in tissue engineering applications, several strategies have been developed. One promising approach is the coapplication of endothelial and adipose derived stem cells (ADSCs). In this study, we aimed at investigating the best ratio of human umbilical vein endothelial cells (HUVECs) and osteogenic differentiated ADSCs with regard to proliferation, apoptosis, osteogenesis and angiogenesis. For this purpose, cocultures of ADSCs and HUVECs with ratios of 25%:75%, 50%:50% and 75%:25% were performed. We were able to prove that cocultivation supports proliferation whereas apoptosis was unidirectional decreased in cocultured HUVECs mediated by a p‐BAD‐dependent mechanism. Moreover, coculturing ADSCs and HUVECs stimulated matrix mineralization and the activity of alkaline phosphatase (ALP). Increased gene expression of the proangiogenic markers eNOS, Flt, Ang2 and MMP3 as well as sprouting phenomena in matrigel assays proved the angiogenic potential of the coculture. In summary, coculturing ADSCs and HUVECs stimulates proliferation, cell survival, osteogenesis and angiogenesis particularly in the 50%:50% coculture.  相似文献   
87.
Warming occurs in the Arctic twice as fast as the global average, which in turn leads to a large enhancement in terpenoid emissions from vegetation. Volatile terpenoids are the main class of biogenic volatile organic compounds (VOCs) that play crucial roles in atmospheric chemistry and climate. However, the biochemical mechanisms behind the temperature‐dependent increase in VOC emissions from subarctic ecosystems are largely unexplored. Using 13CO2‐labeling, we studied the origin of VOCs and the carbon (C) allocation under global warming in the soil–plant–atmosphere system of contrasting subarctic heath tundra vegetation communities characterized by dwarf shrubs of the genera Salix or Betula. The projected temperature rise of the subarctic summer by 5°C was realistically simulated in sophisticated climate chambers. VOC emissions strongly depended on the plant species composition of the heath tundra. Warming caused increased VOC emissions and significant changes in the pattern of volatiles toward more reactive hydrocarbons. The 13C was incorporated to varying degrees in different monoterpene and sesquiterpene isomers. We found that de novo monoterpene biosynthesis contributed to 40%–44% (Salix) and 60%–68% (Betula) of total monoterpene emissions under the current climate, and that warming increased the contribution to 50%–58% (Salix) and 87%–95% (Betula). Analyses of above‐ and belowground 12/13C showed shifts of C allocation in the plant–soil systems and negative effects of warming on C sequestration by lowering net ecosystem exchange of CO2 and increasing C loss as VOCs. This comprehensive analysis provides the scientific basis for mechanistically understanding the processes controlling terpenoid emissions, required for modeling VOC emissions from terrestrial ecosystems and predicting the future chemistry of the arctic atmosphere. By changing the chemical composition and loads of VOCs into the atmosphere, the current data indicate that global warming in the Arctic may have implications for regional and global climate and for the delicate tundra ecosystems.  相似文献   
88.
89.
90.
Stroganov  A. N.  Bleil  M.  Oeberst  R.  Winkler  H.  Semenova  A. V. 《Russian Journal of Genetics》2013,49(9):937-944
Russian Journal of Genetics - Using the AGP*, PGI-1*, PGI-2*, LDH*, IDH*, and PGM* allozyme markers, the differentiation of cod groups during the spawning period in Baltic Sea was evaluated. It was...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号