首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   6篇
  109篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2015年   3篇
  2014年   3篇
  2013年   7篇
  2012年   3篇
  2011年   4篇
  2010年   6篇
  2009年   6篇
  2008年   2篇
  2007年   9篇
  2006年   7篇
  2005年   4篇
  2004年   7篇
  2003年   4篇
  2002年   2篇
  2001年   7篇
  2000年   1篇
  1999年   3篇
  1998年   5篇
  1996年   3篇
  1995年   3篇
  1992年   1篇
  1990年   1篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1972年   1篇
排序方式: 共有109条查询结果,搜索用时 15 毫秒
101.
102.
103.

Background, aim and scope

The mining sector provides materials that are essential elements in a wide range of goods and services, which create value by meeting human needs. Mining and processing activities are an integral part of most complex material cycles so that the application of life cycle assessment (LCA) to minerals and metals has therefore gained prominence. In the past decade, increased use of LCA in the mineral and metal sector has advanced the scientific knowledge through the development of scientifically valid life cycle inventory databases. Though scientifically valid, LCA still needs to depend on several technical assumptions. In particular, measuring the environmental burden issues related to abiotic resource depletion, land use impacts and open-loop recycling within the LCA are widely debated issues. Also, incorporating spatial and temporal sensitivities in LCA, to make it a consistent scientific tool, is yet to be resolved. This article discusses existing LCA methods and proposed models on different issues in relation to minerals and metals sector.

Main features

A critical review was conducted of existing LCA methods in the minerals and metals sector in relation to allocation issues related to indicators of land use impacts, abiotic resource depletion, allocation in open-loop recycling and the system expansions and accounting of spatial and temporal dimension in LCA practice.

Results

Evolving a holistic view about these contentious issues will be presented with view for future LCA research in the minerals and metals industry. This extensive literature search uncovers many of the issues that require immediate attention from the LCA scientific community.

Discussion

The methodological drawbacks, mainly problems with inconsistencies in LCA results for the same situation under different assumptions and issues related to data quality, are considered to be the shortcomings of current LCA. In the minerals and metals sector, it is important to increase the objectivity of LCA by way of fixing those uncertainties, for example, in the LCA of the minerals and metals sector, whether the land use has to be considered in detail or at a coarse level. In regard to abiotic resource characterisation, the weighting and time scales to be considered become a very critical issue of judgement. And, in the case of open-loop recycling, which model will best satisfy all the stake holders? How the temporal and spatial dimensions should be incorporated into LCA is one of the biggest challenges ahead of all those who are concerned. Addressing these issues shall enable LCA to be used as a policy tool in environmental decision-making. There has been enormous debate with respect to on land use impacts, abiotic resource depletion, open-loop recycling and spatial and temporal dimensions, and these debates remain unresolved. Discussions aimed at bringing consensus amongst all the stake holders involved in LCA (i.e. industry, academia, consulting organisations and government) will be presented and discussed. In addition, a commentary of different points of view on these issues will be presented.

Conclusions

This review shall bring into perspective some of those contentious issues that are widely debated by many researchers. The possible future directions proposed by researchers across the globe shall be presented. Finally, authors conclude with their views on the prospects of LCA for future research endeavours.

Recommendations and outlook

Specific LCA issues of minerals and metals need to be investigated further to gain more understanding. To facilitate the future use of LCA as a policy tool in the minerals and metals sector, it is important to increase the objectivity with more scientific validity. Therefore, it is essential that the issues discussed in this paper are addressed to a great detail.  相似文献   
104.
105.
106.

Background  

Inteins are self-splicing protein elements. They are translated as inserts within host proteins that excise themselves and ligate the flanking portions of the host protein (exteins) with a peptide bond. They are encoded as in-frame insertions within the genes for the host proteins. Inteins are found in all three domains of life and in viruses, but have a very sporadic distribution. Only a small number of intein coding sequences have been identified in eukaryotic nuclear genes, and all of these are from ascomycete or basidiomycete fungi.  相似文献   
107.
A multicopy plasmid that contains the tyrosine operon has been used to transform strains of Escherichia coli K-12. The resultant strains yielded levels of chorismate mutase-prephenate dehydrogenase that were up to 5000-fold higher than that given by the parent strain and about 6-fold higher than that given by a tyrR strain. The production of enzyme fell when tetracycline was omitted from the growth medium because of the loss of the plasmid. The bifunctional enzyme was isolated in good yield by a simple purification procedure and shown to possess properties identical to those exhibited by the enzyme from a tyrR strain.  相似文献   
108.
109.
Enzymes belonging to the M1 family play important cellular roles and the key amino acids (aa) in the catalytic domain are conserved. However, C-terminal domain aa are highly variable and demonstrate distinct differences in organization. To address a functional role for the C-terminal domain, progressive deletions were generated in Tricorn interacting factor F2 from Thermoplasma acidophilum (F2) and Peptidase N from Escherichia coli (PepN). Catalytic activity was partially reduced in PepN lacking 4 C-terminal residues (PepNΔC4) whereas it was greatly reduced in F2 lacking 10 C-terminal residues (F2ΔC10) or PepN lacking eleven C-terminal residues (PepNΔC11). Notably, expression of PepNΔC4, but not PepNΔC11, in E. coliΔpepN increased its ability to resist nutritional and high temperature stress, demonstrating physiological significance. Purified C-terminal deleted proteins demonstrated greater sensitivity to trypsin and bound stronger to 8-amino 1-napthalene sulphonic acid (ANS), revealing greater numbers of surface exposed hydrophobic aa. Also, F2 or PepN containing large aa deletions in the C-termini, but not smaller deletions, were present in high amounts in the insoluble fraction of cell extracts probably due to reduced protein solubility. Modeling studies, using the crystal structure of E. coli PepN, demonstrated increase in hydrophobic surface area and change in accessibility of several aa from buried to exposed upon deletion of C-terminal aa. Together, these studies revealed that non-conserved distal C-terminal aa repress the surface exposure of apolar aa, enhance protein solubility, and catalytic activity in two soluble and distinct members of the M1 family.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号