首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   339篇
  免费   37篇
  376篇
  2022年   3篇
  2018年   4篇
  2017年   5篇
  2016年   6篇
  2015年   14篇
  2014年   15篇
  2013年   15篇
  2012年   17篇
  2011年   8篇
  2010年   9篇
  2009年   16篇
  2008年   17篇
  2007年   13篇
  2006年   15篇
  2005年   7篇
  2004年   10篇
  2003年   9篇
  2002年   12篇
  2001年   8篇
  2000年   6篇
  1999年   8篇
  1998年   11篇
  1997年   5篇
  1996年   4篇
  1995年   6篇
  1994年   5篇
  1993年   4篇
  1992年   6篇
  1990年   4篇
  1989年   5篇
  1988年   6篇
  1987年   10篇
  1986年   5篇
  1985年   5篇
  1984年   5篇
  1983年   3篇
  1982年   7篇
  1981年   3篇
  1980年   4篇
  1979年   6篇
  1978年   6篇
  1977年   2篇
  1976年   3篇
  1975年   3篇
  1973年   4篇
  1972年   6篇
  1971年   2篇
  1970年   2篇
  1967年   3篇
  1953年   2篇
排序方式: 共有376条查询结果,搜索用时 0 毫秒
41.
Hemicellulose polysaccharides influence assembly and properties of the plant primary cell wall (PCW), perhaps by interacting with cellulose to affect the deposition and bundling of cellulose fibrils. However, the functional differences between plant cell wall hemicelluloses such as glucomannan, xylan, and xyloglucan (XyG) remain unclear. As the most abundant hemicellulose, XyG is considered important in eudicot PCWs, but plants devoid of XyG show relatively mild phenotypes. We report here that a patterned β-galactoglucomannan (β-GGM) is widespread in eudicot PCWs and shows remarkable similarities to XyG. The sugar linkages forming the backbone and side chains of β-GGM are analogous to those that make up XyG, and moreover, these linkages are formed by glycosyltransferases from the same CAZy families. Solid-state nuclear magnetic resonance indicated that β-GGM shows low mobility in the cell wall, consistent with interaction with cellulose. Although Arabidopsis β-GGM synthesis mutants show no obvious growth defects, genetic crosses between β-GGM and XyG mutants produce exacerbated phenotypes compared with XyG mutants. These findings demonstrate a related role of these two similar but distinct classes of hemicelluloses in PCWs. This work opens avenues to study the roles of β-GGM and XyG in PCWs.

Patterned β-GGM resembles xyloglucan in structure, biosynthesis, and function.

In a Nutshell Background: Plant primary cell walls (PCWs) need to be rigid enough to define the plant shape and yet allow cell expansion at the same time. Plants achieve this by forming a complex network that is composed of cellulose and various non-cellulosic polysaccharides, such as hemicelluloses. Cell walls differ in the abundance of the various hemicelluloses, and their roles are poorly understood. In contrast to xyloglucan (XyG), which has been the most extensively studied hemicellulose in the PCWs, neither the structure nor functions of glucomannan has been resolved. Question: Are the functions of the glucomannan in PCWs distinct from the roles of the most abundant hemicellulose, XyG? Findings: We discovered a type of glucomannan in eudicot PCWs, which we named β-galactoglucomannan (β-GGM) because of its distinctive structures: disaccharide side chains of β-Gal-α-Gal and alternating repeats of Glc-Man in the backbone. Similarity to XyG in structure and biosynthesis led us to identify a β-galactosyltransferase for the β-GGM biosynthesis. We found that β-GGM contributed to normal cell expansion, in a way that was masked by the presence of XyG. These results suggest related functions of β-GGM to XyG, highlighting the necessity to consider the contribution of multiple hemicelluloses in the functional study of plant cell walls. Next steps: We would like to know how β-GGM binds to cellulose, and how this differs to cellulose binding of XyG. Investigation of the precise arrangements and interactions of cellulose and hemicelluloses including β-GGM and XyG will help further understanding of the enigmatic functions of hemicelluloses.  相似文献   
42.
Two-dimensional (15)N-heteronuclear single-quantum coherence (HSQC) NMR studies with a di-domain (lipoyl domain+ linker+ peripheral subunit-binding domain) of the dihydrolipoyl acetyltransferase (E2) component of the pyruvate dehydrogenase complex of Bacillus stearothermophilus allowed a molecular comparison of the need for lipoic acid to be covalently attached to the lipoyl domain in order to undergo reductive acetylation by the pyruvate decarboxylase (E1) component, in contrast with the ability of free lipoic acid to serve as substrate for the dihydrolipoyl dehydrogenase (E3) component. Tethering the lipoyl domain to the peripheral subunit-binding domain in a complex with E1 or E3 rendered the system more like the native enzyme complex, compared with the use of a free lipoyl domain, yet of a size still amenable to investigation by NMR spectroscopy. Recognition of the tethered lipoyl domain by E1 was found to be ensured by intensive interaction with the lipoyl-lysine-containing beta-turn and with residues in the protruding loop close to the beta-turn. The size and sequence of this loop varies significantly between species and dictates the lipoylated lipoyl domain as the true substrate for E1. In contrast, with E3 the main interaction sites on the tethered lipoyl domain were revealed as residues Asp41 and Ala43, which form a conserved sequence motif, DKA, around the lipoyl-lysine residue. No domain specificity is observed at this step and substrate channelling in the complex thus rests on the recognition of the lipoyl domain by the first enzyme, E1. The cofactor, thiamine diphosphate, and substrate, pyruvate, had distinct but contrasting effects on the E1/di-domain interaction, whereas NAD(+) and NADH had negligible effect on the E3/di-domain interaction. Tethering the lipoyl domain did not significantly change the nature of its interaction with E1 compared with a free lipoyl domain, indicative of the conformational freedom allowed by the linker in the movement of the lipoyl domain between active sites.  相似文献   
43.
Yeast Hho1p contains two domains, GI and GII, that are homologous to the single globular domain of the linker histone H1 (GH1). We showed previously that the isolated GI and GII domains have different structural stabilities and functional properties. GI, like GH1 and the related GH5, is stably folded at low ionic strength (10 mM sodium phosphate) and gives strong protection of chromatosome-length DNA ( approximately 166 bp) during micrococcal nuclease digestion of chromatin. GII is intrinsically unfolded in 10 mM sodium phosphate and gives weak chromatosome protection, but in 250 mM sodium phosphate has a structure very similar to that of GI as determined by NMR spectroscopy. We now show that the loop between helices II and III in GII is the cause of both its instability and its inability to confer strong chromatosome protection. A mutant GII, containing the loop of GI, termed GII-L, is stable in 10 mM sodium phosphate and is as effective as GI in chromatosome protection. Two GII mutants with selected mutations within the original loop were also slightly more stable than GII. In GII, two of the four basic residues conserved at the second DNA binding site ("site II") on the globular domain of canonical linker histones, and in GI, are absent. Introduction of the two "missing" site II basic residues into GII or GII-L destabilised the protein and led to decreased chromatosome protection relative to the protein without the basic residues. In general, the ability to confer chromatosome protection in vitro is closely related to structural stability (the relative population of structured and unstructured states). We have determined the structure of GII-L by NMR spectroscopy. GII-L is very similar to GII folded in 250 mM sodium phosphate, with the exception of the substituted loop region, which, as in GI, contains a single helical turn.  相似文献   
44.
Moncrieffe MC  Stott KM  Gay NJ 《FEBS letters》2005,579(18):3920-3926
The interaction between the death domains (DDs) of Tube and the protein kinase Pelle is an important component of the Toll pathway. Published crystallographic data suggests that the Pelle-Tube DD interface is plastic and implies that in addition to the two predominant Pelle-Tube interfaces, a third interaction is possible. We present the NMR solution structure of the isolated death domain of Pelle and a study of the interaction between the DDs of Pelle and Tube. Our data suggests the solution structure of the isolated Pelle DD is similar to that of Pelle DD in complex with Tube. Additionally, they suggest that the plasticity observed in the crystal structure may not be relevant in the functioning death domain complex.  相似文献   
45.
The stability, dynamic, and structural properties of ubiquitin and two multiple hydrophobic core mutants were studied. One of the mutants (U4) has seven substitutions in the hydrophobic core (M1L, I3L, V5I, I13F, L15V, V17M, and V26L). On average, its side chains are larger than the wild-type, and it can thus be thought of as having an overpacked core. The other mutant (U7) has two substitutions (I3V and I13V). On average, it has smaller side chains than the wild-type, and it can therefore be considered to be underpacked. The three proteins are well-folded and show similar backbone dynamics (T(1), T(2), and HNOE values), indicating that the regular secondary structure extends over the same residue ranges. The crystallographic structure of U4 was determined. The final R(factor) and R(free) are 0.198 and 0.248, respectively, at 2.18 A resolution. The structure of U4 is very similar to wild-type ubiquitin. Remarkably, there are almost no changes in the positions of the C(alpha) atoms along the entire backbone, and the hydrogen-bonding network is maintained. The mutations of the hydrophobic core are accommodated by small movements of side chains in the core of mutated and nonmutated residues. Unfolding and refolding kinetic studies revealed that U4 unfolds with the highest rates; however, its refolding rate constants are very similar to those of the wild-type protein. Conversely, U7 seems to be the most destabilized protein; its refolding rate constant is smaller than the other two proteins. This was confirmed by stopped-flow techniques and by H/D exchange methodologies. This work illustrates the possibility of repacking the hydrophobic core of small proteins and has important implications in the de novo design of stable proteins.  相似文献   
46.
Characterization of the polygenic and polymorphic features of the Steller sea lion major histocompatibility complex (MHC) provides an ideal window for evaluating immunologic vigor of the population and identifying emergence of new genotypes that reflect ecosystem pressures. MHC genotyping can be used to measure the potential immunologic vigor of a population. However, since ecosystem-induced changes to MHC genotype can be slow to emerge, measurement of differential expression of these genes can potentially provide real-time evidence of immunologic perturbations. MHC DRB genes were cloned and sequenced using peripheral blood mononuclear leukocytes derived from 10 Steller sea lions from Southeast Alaska, Prince William Sound, and the Aleutian Islands. Nine unique DRB gene sequences were represented in each of 10 animals. MHC DRB gene expression was measured in a subset of six sea lions. Although DRB in genomic DNA was identical in all individuals, relative levels of expressed DRB mRNA was highly variable. Selective suppression of MHC DRB genes could be indicative of geographically disparate environmental pressures, thereby serving as an immediate and sensitive indicator of population and ecosystem health.  相似文献   
47.
Twenty juvenile northern elephant seals (Mirounga angustirostris) that died between 1998 and 2004 had ulcers on the tongue, palatine mucosa, and/or tonsils. Histologic examination of the lesions revealed cytoplasmic swelling, nuclear pyknosis, and eosinophilic to amphophilic intranuclear inclusions bodies suggestive of herpesviral infection. Electron microscopic examination and polymerase chain reaction analysis confirmed the presence of a herpesvirus. Subsequent DNA sequencing identified this to be a new gammaherpesvirus that was similar to Porcine lymphotropic virus 2, Alcephaline herpesvirus 1 (malignant catarrhal fever virus from wildebeest), and Chlorocebus rhadinovirus 1 from African green monkeys. Identical herpesviral DNA was also detected in blood and mucosal swabs collected from five healthy elephant seal pups.  相似文献   
48.
Darlow JM  Stott DI 《Immunogenetics》2006,58(7):511-522
Over the past 20 years, many DNA sequences have been published suggesting that all or part of the V(H) segment of a rearranged immunoglobulin gene may be replaced in vivo. Two different mechanisms appear to be operating. One of these is very similar to primary V(D)J recombination, involving the RAG proteins acting upon recombination signal sequences, and this has recently been proven to occur. Other sequences, many of which show partial V(H) replacements with no addition of untemplated nucleotides at the V(H)-V(H) joint, have been proposed to occur by an unusual RAG-mediated recombination with the formation of hybrid (coding-to-signal) joints. These appear to occur in cells already undergoing somatic hypermutation in which, some authors are convinced, RAG genes are silenced. We recently proposed that the latter type of V(H) replacement might occur by homologous recombination initiated by the activity of AID (activation-induced cytidine deaminase), which is essential for somatic hypermutation and gene conversion. The latter has been observed in other species, but not in human Ig genes, so far. In this paper, we present a new analysis of sequences published as examples of the second type of rearrangement. This not only shows that AID recognition motifs occur in recombination regions but also that some sequences show replacement of central sections by a sequence from another gene, similar to gene conversion in the immunoglobulin genes of other species. These observations support the proposal that this type of rearrangement is likely to be AID-mediated rather than RAG-mediated and is consistent with gene conversion.  相似文献   
49.
50.
Highlights? Binding of p53 to its cognate DNA is facilitated by HMGB1 ? The N-terminal region of p53 (residues 38–61; TAD2) interacts with the HMG boxes ? The acidic tail of HMGB1 masks the p53 binding site in the free proteins ? The structure of the A-box/p53(1–93) complex shows that TAD2 acts as an ss-DNA mimic  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号