首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   172篇
  免费   1篇
  2017年   1篇
  2014年   2篇
  2013年   5篇
  2012年   10篇
  2011年   15篇
  2010年   19篇
  2009年   17篇
  2008年   13篇
  2007年   19篇
  2006年   13篇
  2005年   18篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   5篇
  1999年   3篇
  1998年   2篇
  1997年   4篇
  1996年   3篇
  1995年   1篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
  1987年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1954年   1篇
排序方式: 共有173条查询结果,搜索用时 31 毫秒
31.
The Energy Independence and Security Act (EISA) of 2007 mandates US production of 136 billion L of biofuel by 2022. This target implies an appropriation of regional primary production for dedicated feedstocks at scales that may dramatically affect water supply, exacerbate existing water quality challenges, and force undesirable environmental resource trade offs. Using a comparative life cycle approach, we assess energy balances and water resource implications for four dedicated ethanol feedstocks – corn, sugarcane, sweet sorghum, and southern pine – in two southeastern states, Florida and Georgia, which are a presumed epicenter for future biofuel production. Net energy benefit ratios for ethanol and coproducts range were 1.26 for corn, 1.94 for sweet sorghum, 2.51 for sugarcane, and 2.97 for southern pine. Corn also has high nitrogen (N) and water demand (11.2 kg GJnet?1 and 188 m3 GJnet?1, respectively) compared with other feedstocks, making it a poor choice for regional ethanol production. Southern pine, in contrast, has relatively low N demand (0.4 kg GJnet?1) and negligible irrigation needs. However, it has comparatively low gross productivity, which results in large land area per unit ethanol production (208 m2 GJnet?1), and, by association, substantial indirect and incremental water use (51 m3 GJnet?1). Ultimately, all four feedstocks require substantial land (10.1, 3.1, 2.5, and 6.1 million ha for corn, sugarcane, sweet sorghum, and pine, respectively), annual N fertilization (3230, 574, 396, 109 million kg N) and annual total water (54 400, 20 840, 8840, and 14 970 million m3) resources when scaled up to meet EISA renewable fuel standards production goals. This production would, in turn, offset only 17.5% of regional gasoline consumption on a gross basis, and substantially less when evaluated on a net basis. Utilization of existing waste biomass sources may ameliorate these effects, but does not obviate the need for dedicated primary feedstock production. Careful scrutiny of environmental trade‐offs is necessary before embracing aggressive ethanol production mandates.  相似文献   
32.
ABSTRACT We used recent developments in theoretical population ecology to construct basic models of common loon (Gavia immer) demography and population dynamics. We parameterized these models using existing survival estimates and data from long-term monitoring of loon productivity and abundance. Our models include deterministic, 2-stage, density-independent matrix models, yielding population growth-rate estimates (λ) of 0.99 and 1.01 for intensively studied populations in our Wisconsin, USA, and New Hampshire, USA, study areas, respectively. Perturbation analysis of these models indicated that estimated growth rate is extremely sensitive to adult survival, as expected for this long-lived species. Also, we examined 20 years of count data for the 2 areas and evaluated support for a set of count-based models of population growth. We detected no temporal trend in Wisconsin, which would be consistent with fluctuation around an average equilibrium state but could also result from data limitations. For New Hampshire, the model set included varying formulations of density dependence and partitioning of stochasticity that were enabled by the annual sampling resolution. The best model for New Hampshire included density regulation of population growth and, along with the demographic analyses for both areas, provided insight into the possible importance of breeding habitat availability and the abundance of nonbreeding adults. Based on these results, we recommend that conservation organizations include nonbreeder abundance in common loon monitoring efforts and that additional emphasis be placed on identifying and managing human influences on adult loon survival.  相似文献   
33.
Variation in the qualitative composition of volatile leaf oil was examined in the rare Eucalyptus argutifolia and its widespread congener Eucalyptus obtusiflora . The results revealed that, consistent with the pattern seen with allozymes, E. argutifolia had less variation within populations than E. obtusiflora . Total leaf oil diversity was also significantly lower in the rare species. As found with allozymes, most leaf oil diversity was within populations, but there was also a significant proportion of the variation between populations (25.2% and 27.3% for E. argutifolia and E. obtusiflora , respectively). There were significant associations between phenotypic distance based on leaf oils and geographical distance and between phenotypic and genetic distance across all populations, but these associations were not evident within species. Factors leading to reduced variation in E. argutifolia appear to affect all types of variation, but the relationships between different types of variation within the species are less apparent.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 738–745.  相似文献   
34.
This study describes experimental herbivory and detritivory of three common native aquatic macrophyte species by the introduced Mozambique tilapia Oreochromis mossambicus (Peters) (Pisces: Cichlidae), and its physiological response to their consumption. There was a highly significant effect of fish herbivory on plant weight for each of the macrophyte species, but this effect was not influenced by any preference for periphyton. Despite the herbivory, there was a highly significant loss of fish body weight across all plant species and weight could only be maintained by supplementary feeding of a high protein fish flake. These results suggest that despite eating these plants, an alternative food resource may be needed for survival and may trigger trophic plasticity in O. mossambicus.  相似文献   
35.
Examining differences in colour plasticity between closely‐related species in relation to the heterogeneity of background colours found in their respective habitats may offer important insight into how cryptic colour change evolves in natural populations. In the present study, we examined whether nonbreeding dorsal body coloration has diverged between sympatric species of stickleback along with changes in habitat‐specific background colours. The small, limnetic species primarily occupies the pelagic zone and the large, benthic species inhabits the littoral zone. We placed benthic and limnetic sticklebacks against extremes of habitat background colours and measured their degree of background matching and colour plasticity. Benthics matched the littoral background colour more closely than did the limnetics, although there was no difference between species in their resemblance to the pelagic background colour. Benthics were able to resemble both background colours by exhibiting greater directional colour plasticity in their dorsal body coloration than limnetics, which may be an adaptive response to the greater spectral heterogeneity of the littoral zone. The present study highlights how habitat‐specific spectral characteristics may shape cryptic coloration differences between stickleback species. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 902–914.  相似文献   
36.
Spider orb-webs contain sticky prey capture threads and non-sticky support threads. Primitive orb-weavers of the Deinopoidea produce dry cribellar threads made of thousands of silk fibrils that surround supporting axial fibres, whereas the viscous threads of modern Araneoidea orb-weavers produce adhesive threads with an aqueous solution that coalesces as droplets around the axial fibres. We have previously shown that the greater diversity of the Araneoidea is phylogenetically significant and attributed this disparity to a number of advantages, considered key innovations, that adhesive thread has over cribellar thread. An important putative advantage of adhesive thread demonstrated by Kohler and Vollrath in their 1995 study is its greater extensibility, a feature that better adapts it to absorb the kinetic energy of a prey strike. However, this conclusion is based on a two-species comparison that does not take advantage of the modern comparative method that requires hypotheses to be tested in a phylogenetic context. Using a transformational analysis to examine threads produced by nine species, our study finds no support for the punctuated explanation that adhesive thread has a greater extensibility than cribellar thread. Instead, it strongly supports the associative null hypothesis that capture thread extensibility is tuned to spider mass and to architectural features of the web, including its capture area, capture spiral spacing, and capture area per radius.  相似文献   
37.
One of the most important changes in high‐latitude ecosystems in response to climatic warming may be the thawing of permafrost soil. In upland tundra, the thawing of ice‐rich permafrost can create localized surface subsidence called thermokarst, which may change the soil environment and influence ecosystem carbon release and uptake. We established an intermediate scale (a scale in between point chamber measurements and eddy covariance footprint) ecosystem carbon flux study in Alaskan tundra where permafrost thaw and thermokarst development had been occurring for several decades. The main goal of our study was to examine how dynamic ecosystem carbon fluxes [gross primary production (GPP), ecosystem respiration (Reco), and net ecosystem exchange (NEE)] relate to ecosystem variables that incorporate the structural and edaphic changes that co‐occur with permafrost thaw and thermokarst development. We then examined how these measured ecosystem carbon fluxes responded to upscaling. For both spatially extensive measurements made intermittently during the peak growing season and intensive measurements made over the entire growing season, ecosystem variables including degree of surface subsidence, thaw depth, and aboveground biomass were selected in a mixed model selection procedure as the ‘best’ predictors of GPP, Reco, and NEE. Variables left out of the model (often as a result of autocorrelation) included soil temperature, moisture, and normalized difference vegetation index. These results suggest that the structural changes (surface subsidence, thaw depth, aboveground biomass) that integrate multiple effects of permafrost thaw can be useful components of models used to estimate ecosystem carbon exchange across thermokarst affected landscapes.  相似文献   
38.
39.
Schoenoplectus americanus is a model organism for studying ecological and ecosystem responses of salt marsh plant communities to global climate change. Here we characterize 16 microsatellite loci in S. americanus to facilitate studies on the genetic basis of phenotypic responses to changing climate conditions such as elevated atmospheric carbon dioxide. Most loci also amplified in the morphologically similar sister species, Schoenoplectus pungens. Five loci exhibited species‐specific alleles or distinct allelic size distributions that discriminate S. americanus from S. pungens.  相似文献   
40.
ABSTRACT Accurately estimating large mammal populations is a difficult challenge because species of interest often occupy vast areas and exhibit low and heterogeneous visibility. Population estimation techniques using aerial surveys and statistical design and analysis methods provide a means for meeting this challenge, yet they have only rarely been validated because wild populations of known size suitable for field tests are rare. Our study presents field validations of a photographic aerial mark-recapture technique that takes advantage of the recognizable natural markings on free-roaming feral horses (Equus caballus) to accurately identify individual animals and groups of animals sighted on multiple occasions. The 3 small populations of feral horses (<400 animals each) in the western United States used in the study were all closely monitored on a weekly basis by local researchers, thus providing test populations of known size. We were able to accurately estimate these population sizes with aerial surveys, despite rugged terrain and dense vegetation that created substantial heterogeneity of sighting probability among horse groups. Our best estimates at the 3 sites were within −6.7%, 2.6%, and −8.6% of known truth (-4.2% mean error, 6.0% mean absolute error). In contrast, we found undercount bias as large as 32% before any statistical corrections. The necessary corrections varied both temporally and spatially, in response to previous sighting history (behavioral response), and by the number of horses in a group. Despite modeling some of the differences in horse-group visibility with sighting covariates, we found substantial residual unmodeled heterogeneity that contributed to underestimation of the true population by as much as 22.7% when we used models that did not fully account for these unmeasured sources. We also found that the cost of the accurate and validated methods presented here is comparable to that of raw count (so called, census) methods commonly employed across feral horse ranges in 10 western states. We believe this technique can assist managers in accurately estimating many feral horse populations and could be applied to other species with sufficiently diverse and distinguishable visible markings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号