首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   264篇
  免费   10篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   5篇
  2018年   4篇
  2017年   4篇
  2016年   3篇
  2015年   8篇
  2014年   16篇
  2013年   21篇
  2012年   10篇
  2011年   11篇
  2010年   16篇
  2009年   7篇
  2008年   22篇
  2007年   17篇
  2006年   10篇
  2005年   5篇
  2004年   11篇
  2003年   9篇
  2002年   7篇
  2001年   9篇
  2000年   9篇
  1999年   3篇
  1998年   8篇
  1997年   9篇
  1996年   2篇
  1995年   4篇
  1994年   2篇
  1993年   4篇
  1992年   8篇
  1991年   4篇
  1990年   7篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1983年   2篇
  1975年   2篇
  1974年   1篇
  1972年   3篇
排序方式: 共有274条查询结果,搜索用时 265 毫秒
71.
Two crucial steps in the virus life cycle are genome encapsidation to form an infective virion and genome exit to infect the next host cell. In most icosahedral double-stranded (ds) DNA viruses, the viral genome enters and exits the capsid through a unique vertex. Internal membrane-containing viruses possess additional complexity as the genome must be translocated through the viral membrane bilayer. Here, we report the structure of the genome packaging complex with a membrane conduit essential for viral genome encapsidation in the tailless icosahedral membrane-containing bacteriophage PRD1. We utilize single particle electron cryo-microscopy (cryo-EM) and symmetry-free image reconstruction to determine structures of PRD1 virion, procapsid, and packaging deficient mutant particles. At the unique vertex of PRD1, the packaging complex replaces the regular 5-fold structure and crosses the lipid bilayer. These structures reveal that the packaging ATPase P9 and the packaging efficiency factor P6 form a dodecameric portal complex external to the membrane moiety, surrounded by ten major capsid protein P3 trimers. The viral transmembrane density at the special vertex is assigned to be a hexamer of heterodimer of proteins P20 and P22. The hexamer functions as a membrane conduit for the DNA and as a nucleating site for the unique vertex assembly. Our structures show a conformational alteration in the lipid membrane after the P9 and P6 are recruited to the virion. The P8-genome complex is then packaged into the procapsid through the unique vertex while the genome terminal protein P8 functions as a valve that closes the channel once the genome is inside. Comparing mature virion, procapsid, and mutant particle structures led us to propose an assembly pathway for the genome packaging apparatus in the PRD1 virion.  相似文献   
72.
Mitochondria are eukaryotic organelles supporting individual life-style via generation of proton motive force and cellular energy, and indispensable metabolic pathways. As part of genome sequencing of the white rot Basidiomycota species Phlebia radiata, we first assembled its mitochondrial genome (mtDNA). So far, the 156 348 bp mtDNA is the second largest described for fungi, and of considerable size among eukaryotes. The P. radiata mtDNA assembled as single circular dsDNA molecule containing genes for the large and small ribosomal RNAs, 28 transfer RNAs, and over 100 open reading frames encoding the 14 fungal conserved protein subunits of the mitochondrial complexes I, III, IV, and V. Two genes (atp6 and tRNA-IleGAU) were duplicated within 6.1 kbp inverted region, which is a unique feature of the genome. The large mtDNA size, however, is explained by the dominance of intronic and intergenic regions (sum 80% of mtDNA sequence). The intergenic DNA stretches harness short (≤200 nt) repetitive, dispersed and overlapping sequence elements in abundance. Long self-splicing introns of types I and II interrupt eleven of the conserved genes (cox1,2,3; cob; nad1,2,4,4L,5; rnl; rns). The introns embrace a total of 57 homing endonucleases with LAGLIDADGD and GYI-YIG core motifs, which makes P. radiata mtDNA to one of the largest known reservoirs of intron-homing endonucleases. The inverted duplication, intergenic stretches, and intronic features are indications of dynamics and genetic flexibility of the mtDNA, not fully recognized to this extent in fungal mitochondrial genomes previously, thus giving new insights for the evolution of organelle genomes in eukaryotes.  相似文献   
73.
In internal membrane-containing viruses, a lipid vesicle enclosed by the icosahedral capsid protects the genome. It has been postulated that this internal membrane is the genome delivery device of the virus. Viruses built with this architectural principle infect hosts in all three domains of cellular life. Here, using a combination of electron microscopy techniques, we investigate bacteriophage PRD1, the best understood model for such viruses, to unveil the mechanism behind the genome translocation across the cell envelope. To deliver its double-stranded DNA, the icosahedral protein-rich virus membrane transforms into a tubular structure protruding from one of the 12 vertices of the capsid. We suggest that this viral nanotube exits from the same vertex used for DNA packaging, which is biochemically distinct from the other 11. The tube crosses the capsid through an aperture corresponding to the loss of the peripentonal P3 major capsid protein trimers, penton protein P31 and membrane protein P16. The remodeling of the internal viral membrane is nucleated by changes in osmolarity and loss of capsid-membrane interactions as consequence of the de-capping of the vertices. This engages the polymerization of the tail tube, which is structured by membrane-associated proteins. We have observed that the proteo-lipidic tube in vivo can pierce the gram-negative bacterial cell envelope allowing the viral genome to be shuttled to the host cell. The internal diameter of the tube allows one double-stranded DNA chain to be translocated. We conclude that the assembly principles of the viral tunneling nanotube take advantage of proteo-lipid interactions that confer to the tail tube elastic, mechanical and functional properties employed also in other protein-membrane systems.  相似文献   
74.
75.
The male flowering and leaf bud burst of birch take place almost simultaneously, suggesting that the observations of leaf bud burst could be used to determine the timing of birch pollen release. However, long‐distance transport of birch pollen before the onset of local flowering may complicate the utilization of phenological observations in pollen forecasting.

We compared the timing of leaf bud burst of silver birch with the timing of the stages of birch pollen season during an eight year period (1997–2004) at five sites in Finland. The stages of the birch pollen season were defined using four different thresholds: 1) the first date of the earliest three‐day period with airborne birch pollen counts exceeding 10 grains m?3 air; and the dates when the accumulated pollen sum reaches 2) 5%; 3) 50% and 4) 95% of the annual total. Atmospheric modelling was used to determine the source areas for the observed long‐distance transported pollen, and the exploitability of phenological observations in pollen forecasting was evaluated.

Pair‐wise comparisons of means indicate that the timing of leaf bud burst fell closest to the date when the accumulated pollen sum reached 5% of the annual total, and did not differ significantly from it at any site (p<0.05; Student‐Newman‐Keuls test). It was found that the timing of leaf bud burst of silver birch overlaps with the first half of the main birch pollen season. However, phenological observations alone do not suffice to determine the timing of the main birch pollen season because of long‐distance transport of birch pollen.  相似文献   
76.
Proprotein convertase subtilisin/kexin (PCSK) enzymes convert proproteins into bioactive end products. Although other PCSK enzymes are known to be essential for biological processes ranging from cholesterol metabolism to host defense, the in vivo importance of the evolutionarily ancient PCSK7 has remained enigmatic. Here, we quantified the expressions of all pcsk genes during the 1st week of fish development and in several tissues. pcsk7 expression was ubiquitous and evident already during the early development. To compare mammalian and zebrafish PCSK7, we prepared homology models, which demonstrated remarkable structural conservation. When the PCSK7 function in developing larvae was inhibited, we found that PCSK7-deficient fish have defects in various organs, including the brain, eye, and otic vesicle, and these result in mortality within 7 days postfertilization. A genome-wide analysis of PCSK7-dependent gene expression showed that, in addition to developmental processes, several immune system-related pathways are also regulated by PCSK7. Specifically, the PCSK7 contributed to the mRNA expression and proteolytic cleavage of the cytokine TGFβ1a. Consequently, tgfβ1a morphant fish displayed phenotypical similarities with pcsk7 morphants, underscoring the importance of this cytokine in the zebrafish development. Targeting PCSK activity has emerged as a strategy for treating human diseases. Our results suggest that inhibiting PCSK7 might interfere with normal vertebrate development.  相似文献   
77.
78.
The relationship between the intramolecular dynamics and the spectra has been analyzed by means of the molecular dynamics technique. Time autocorrelation functions of bond lengths, bending angles and torsional angles have been evaluated in a crystalline trans-polyacetylene system. The Fourier transforms of such functions have been compared with the densities of states obtained both for carbon and hydrogen atoms. This comparison is aimed at investigating the microscopic origin of the peaks which appear in the densities of states. This approach can be used in the analysis of the spectroscopic data of any molecular or polymeric system.  相似文献   
79.
Many terrestrial endotherm food webs constitute three trophic level cascades. Others have two trophic level dynamics (food limited herbivores; plants adapted to tackle intense herbivory) or one trophic level dynamic (herbivorous endotherms absent, thus plants compete for the few places where they can survive and grow). According to the Exploitation Ecosystems Hypothesis (EEH), these contrasting dynamics are consequences of differences in primary productivity. The productivity thresholds for changing food web dynamics were assumed to be global constants. We challenged this assumption and found that several model parameters are sensitive to the contrast between persistently warm and seasonally cold climates. In persistently warm environments, three trophic level dynamics can be expected to prevail almost everywhere, save the most extreme deserts. We revised EEH accordingly and tested it by compiling direct evidence of three and two trophic level dynamics and by studying the global distribution of felids. In seasonally cold environments, we found evidence for three trophic level dynamics only in productive ecosystems, while evidence for two trophic level dynamics appeared in ecosystems with low primary productivity. In persistently warm environments, we found evidence for three trophic level dynamics in all types of ecosystems. The distribution of felids corroborated these results. The empirical evidence thus indicates that two trophic level dynamics, as defined by EEH, are restricted to seasonally cold biomes with low primary productivity, such as the artic–alpine tundra and the temperate steppe.  相似文献   
80.
1.?Insect body size is predicted to increase with decreasing latitude because time available for growth increases. In insects with changing voltinism (i.e. number of generations per season), sharp decreases in development time and body size are expected at season lengths where new generations are added to the phenology of a species, giving rise to saw-tooth clines in these traits across latitudes. Growth rate variation may affect the magnitude of variation in body size or even reverse the saw-tooth cline. 2.?In this study, we analyse latitudinal body size clines in four geometrid moths with changing voltinism in a common laboratory environment. In addition to body size, we measured larval development time and growth rate and genetic correlations among the three traits. 3.?The patterns of clinal variation in body size were diverse, and the theory was not supported even when saw-tooth body size clines were found. Larval development time increased and growth rate decreased consistently with increasing season length, the clines in these traits being uniform. 4.?The consistencies of development time and growth rate clines suggest a common mechanism underlying the observations. Such a mechanism is discussed in relation to the complex interdependencies among the traits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号