首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3483篇
  免费   320篇
  国内免费   2篇
  3805篇
  2022年   26篇
  2021年   68篇
  2020年   31篇
  2019年   43篇
  2018年   53篇
  2017年   56篇
  2016年   86篇
  2015年   120篇
  2014年   130篇
  2013年   159篇
  2012年   219篇
  2011年   207篇
  2010年   155篇
  2009年   110篇
  2008年   152篇
  2007年   162篇
  2006年   142篇
  2005年   142篇
  2004年   114篇
  2003年   119篇
  2002年   106篇
  2001年   106篇
  2000年   104篇
  1999年   91篇
  1998年   59篇
  1997年   39篇
  1996年   35篇
  1995年   24篇
  1994年   25篇
  1993年   22篇
  1992年   58篇
  1991年   50篇
  1990年   55篇
  1989年   53篇
  1988年   41篇
  1987年   35篇
  1986年   37篇
  1985年   37篇
  1984年   26篇
  1983年   27篇
  1982年   25篇
  1981年   22篇
  1980年   20篇
  1979年   29篇
  1978年   29篇
  1977年   20篇
  1976年   20篇
  1975年   23篇
  1974年   25篇
  1973年   27篇
排序方式: 共有3805条查询结果,搜索用时 0 毫秒
31.
32.
33.
34.
35.
Zusammenfassung 1.Von 600 Neuronen des Colliculus superior und Praetectums der Katze wurde mit Stahlmikroelektroden abgeleitet und der Ableitort markiert. Die Lage der rezeptiven Felder wurde mit bewegten und stationären Lichtreizen bestimmt und dem Ableitort zugeordnet.2.Im Colliculus superior und Praetectum fanden sich richtungsspezifische und richtungsunspezifische Bewegungsneurone. Ein Teil der praetectalen Neurone reagierte richtungsspezifisch auf Bewegungen vom Tier weg und auf das Tier zu (S-Neurone).3.Innerhalb einer senkrecht zur Oberfläche des Colliculus verlaufenden Penetrationssäule nahm die Feldgröße bei gleichbleibender Feldposition mit zunehmender Tiefe zu. Zwischen Ableitort und Feldposition bestand eine systematische retinotopische Beziehung. Die Projektion des vertikalen O-Meridians des Gesichtsfeldes verlief im rostralen Drittel des Colliculus von medial nach lateral, die des horizontalen O-Meridians in der Mitte des Colliculus von rostral nach caudal. Das Projektionsschema eines Colliculus enthält einen nasalen Teil der ipsilateralen Gesichtsfeldhälfte.4.Im Praetectum verlief die Projektion vertikaler Meridiane am caudalen Ende von medial nach lateral und überlappte sich teilweise mit dem Projektionsgebiet des vertikalen O-Meridians im Colliculus. Die horizontalen Meridiane verliefen so von caudal nach rostral, daß das Projektionsschema des Praetectums spiegelbildlich zu dem des Colliculus superior angeordnet war. Dieses Projektionsschema galt nur für den Nucleus tractus optici und die Area praetectalis. Die übrigen praetectalen Kerne mit zum Teil sehr großen rezeptiven Feldern und spezifischen Reaktionsweisen erhielten keine retinotopische Projektion.5.Rezeptive Felder der oberflächennahen Schichten waren uniform on-, off-oder on-off strukturiert, Felder tiefergelegener Einheiten waren ungeordnet aus on-, off- und on-off Bezirken zusammengesetzt. Binocular erregbare Neurone zeigten für beide Augen gleiche Position und Struktur der rezeptiven Felder.6.Die Ergebnisse wurden mit den an anderen Tierarten erhobenen Befunden verglichen. Ihre mögliche funktionelle Bedeutung wurde diskutiert.
Retinotopic relationship and structure of receptive fields in the optic tectum and pretectum of the cat
Summary 1.600 neurons of the cat's superior colliculus and pretectum were recorded and marked with stainless-steel microelectrodes. The position and structure of receptive fields were tested with stationary flickering and moving stimuli. The position of the stimuli in the visual field was determined by the direction of the lamp projecting the light-points because animal and lamp were arranged in a fixed relationship to the screen. The positions of the stimuli were described in a coordinate system based on the horizontal-and vertical zeromeridean of the retina.2.About 55% of tectal neurons are directionally selective and signal mainly movements directed to the periphery of the visual field. Neurons of the pretectum have the same response characteristics as neurons of the superior colliculus but in addition some are selectively responsive to movements towards the animal or away from it (S-neurons).3.Neurons in one functional column (diameter 0.5 mm, length 3.6 mm) perpendicular to the surface of the superior colliculus react to the same position and preferred direction of a moving stimulus. The size, complexity and directional selectivity of the receptive fields increase with the depth of the recorded neurons. The projection of the vertical zero-meridean passes across the rostral part of the colliculus but does not form the rostral border of the superior colliculus. The nasal part of the ipsilateral visual field projects to the most rostral part of the superior colliculus. The projection of the horizontal zeromeridean passes rostro-caudally in a nearly sagittal plane down the middle of the colliculus. Along this projection-line the resolving power is 13°/column in the caudal part and 6°/column in the rostral part of the superior colliculus. The size of the receptive fields increase with their excentricity in the visual field. (Average of field diameters: 26±13°).4.The diameter of receptive fields in the pretectum was 21±11°, except for a few very large fields (70° and larger). Along the medio-lateral axis of the pretectum there was a retinotopic organization identical to that in the colliculus. Along the caudo-rostral axis, the retinotopic organization was the mirror image of that in the colliculus. No retinotopic organization was observed in the so-called deep pretectal nucleus or in the nucleus of the posterior commissure. Neurons of these nuclei may represent more complex levels in the visual pathway.5.The more superficial neurons of the colliculus (0.1–1.8 mm deep) react mainly with uniform on-, off- or on-off responses to stationary flickered stimuli, i.e. their receptive fields (7–20° in diameter) are uniformly on-, off- or on-off. The deeper neurons (2 mm and deeper) have receptive fields (20–40° in diameter) with compound but not antagonistic structure. No receptive fields showed on- or off-inhibition. Binocularly driven neurons have the same position and structure of their receptive fields for both eyes.6.A survey of the literature reveals that all vertebrates so far investigated show small differences in the destination and retinotopic organization of their retinofugal fibre projections and in the types of tectal receptive fields. These differences seem to indicate an adaption to the development of binocular representation of the center of the visual field, of a specialized area of the retina and of a retino-cortical system.
  相似文献   
36.
37.
38.
Summary Furosemide-binding proteins were isolated from cholate-solubilized membranes of Ehrlich ascites tumor cells by affinity chromatography, using furosemide as ligand. Solubilized proteins retarded by the affinity material were eluted by furosemide. In reducing and denaturing gels, the major proteins eluted by furosemide were 100 and 45 kDa. In nonreducing, nondenaturing gels, homodimers of both polypeptides were found, whereas no oligomeric proteins containing both polypeptides were seen. It is concluded that the furosemide gel binds two distinct dimeric proteins. The isolated proteins were reconstituted into phospholipid vesicles and the K+ transport activity of these vesicles was assayed by measurement of86Rb+ uptake against a large opposing K+ gradient. The reconstituted system was found to contain a K+ transporting protein, which is sensitive to Ba2+ like the K+ channel previously demonstrated to be activated in intact cells after cell swelling.  相似文献   
39.
40.
1.  Under laboratory conditions complete development of H. sparsutum is shown within a temperature range of-0.7°C to +8°C. Constant temperatures above 10°C are lethal to the population. Larval growth (L1 to L5) is strictly temperature-dependent between-0.7 and +3.5°C, but slightly temperature compensated between +3.5 and +8°C.
2.  Rate of egg production is highest at an average daily temperature of-0.7°C.
3.  The sixth larval stage (L6) can be subdivided into a wandering and feeding period of about 40 days (at 7.3°C) and a following prepupal resting stage (PPR) with a high variability in duration, even at one and the same temperature, which ends with pupation.
4.  Entrance into this resting stage seems to be independent of environmental changes and can occur at every time of the year. Termination of the PPR depends upon light stimuli received during the entire larval period.
5.  Readiness for pupation exists when the photoperiod in the PPR exceeds that during hatching of first larva. A decreasing photoperiod during PPR triggers pupation in prepupae of various age.
6.  The diapause stage seems to be a primary factor synchronizing the life cycle with seasonal changes in the environment.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号