首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1041篇
  免费   160篇
  2021年   14篇
  2019年   11篇
  2018年   13篇
  2017年   15篇
  2016年   18篇
  2015年   31篇
  2014年   31篇
  2013年   38篇
  2012年   50篇
  2011年   47篇
  2010年   36篇
  2009年   26篇
  2008年   37篇
  2007年   33篇
  2006年   34篇
  2005年   41篇
  2004年   25篇
  2003年   27篇
  2002年   31篇
  2001年   44篇
  2000年   32篇
  1999年   25篇
  1998年   19篇
  1997年   11篇
  1996年   15篇
  1995年   11篇
  1994年   11篇
  1992年   23篇
  1991年   24篇
  1990年   10篇
  1989年   19篇
  1988年   21篇
  1987年   28篇
  1986年   19篇
  1983年   14篇
  1982年   17篇
  1981年   12篇
  1980年   12篇
  1979年   11篇
  1978年   11篇
  1977年   14篇
  1975年   13篇
  1974年   10篇
  1973年   13篇
  1945年   11篇
  1941年   9篇
  1939年   15篇
  1938年   12篇
  1937年   9篇
  1916年   9篇
排序方式: 共有1201条查询结果,搜索用时 15 毫秒
81.
82.
Molecular markers for resistance of sorghum to the hemi-parasitic weed Striga hermonthica were mapped in two recombinant inbred populations (RIP-1, -2) of F3:5 lines developed from the crosses IS9830 × E36-1 (1) and N13 × E36-1 (2). The resistant parental lines were IS9830 and N13; the former is characterized by a low stimulation of striga seed germination, the latter by mechanical resistance. The genetic maps of RIP-1 and RIP-2 spanned 1,498 cM and 1,599 cM, respectively, with 137 and 157 markers distributed over 11 linkage groups. To evaluate striga resistance, we divided each RIP into set 1 (116 lines tested in 1997) and set 2 (110 lines evaluated in 1998). Field trials were conducted in five environments per year in Mali and Kenya. Heritability estimates for area under the striga number progress curve (ASNPC) in sets 1 and 2 were respectively 0.66 and 0.74 in RIP-1 and 0.81 and 0.82 in RIP-2. Across sites, composite interval mapping detected 11 QTL (quantitative trait loci) and nine QTL in sets 1 and 2 of RIP-1, explaining 77% and 80% of the genetic variance for ASNPC, respectively. The most significant RIP-1 QTL corresponded to the major-gene locus lgs (low stimulation of striga seed germination) in linkage group I. In RIP-2, 11 QTL and nine QTL explained 79% and 82% of the genetic variance for ASNPC in sets 1 and 2, respectively. Five QTL were common to both sets of each RIP, with the resistance alleles deriving from IS9830 or N13. Since their effects were validated across environments, years and independent RIP samples, these QTL are excellent candidates for marker-assisted selection.  相似文献   
83.
Recent evidence has shown that activation of lipid-sensitive protein kinase C (PKC) isoforms leads to skeletal muscle insulin resistance. However, earlier studies demonstrated that phorbol esters increase glucose transport in skeletal muscle. The purpose of the present study was to try to resolve this discrepancy. Treatment with the phorbol ester 12-deoxyphorbol-13-phenylacetate 20-acetate (dPPA) led to an approximately 3.5-fold increase in glucose transport in isolated fast-twitch epitrochlearis and flexor digitorum brevis muscles. Phorbol ester treatment was additive to a maximally effective concentration of insulin in fast-twitch skeletal muscles. Treatment with dPPA did not affect insulin signaling in the epitrochlearis. In contrast, phorbol esters had no effect on basal glucose transport and inhibited maximally insulin-stimulated glucose transport approximately 50% in isolated slow-twitch soleus muscle. Furthermore, dPPA treatment inhibited the insulin-stimulated tyrosine phosphorylation of insulin receptor substrate (IRS)-1 and the threonine and serine phosphorylation of PKB by approximately 50% in the soleus. dPPA treatment also caused serine phosphorylation of IRS-1 in the slow-twitch soleus muscle. In conclusion, our results show that phorbol esters stimulate glucose transport in fast-twitch skeletal muscles and inhibit insulin signaling in slow-twitch soleus muscle of rats. These findings suggest that mechanisms other than PKC activation mediate lipotoxicity-induced whole body insulin resistance.  相似文献   
84.
Adenosine plays a role in promoting sleep, an effect that is thought to be mediated in the basal forebrain. Adenosine levels vary in this region with prolonged wakefulness in a unique way. The basis for this is unknown. We examined, in rats, the activity of the major metabolic enzymes for adenosine - adenosine deaminase, adenosine kinase, ecto- and cytosolic 5'-nucleotidase - in sleep/wake regulatory regions as well as cerebral cortex, and how the activity varies across the day and with sleep deprivation. There were robust spatial differences for the activity of adenosine deaminase, adenosine kinase, and cytosolic and ecto-5'-nucleotidase. However, the basal forebrain was not different from other sleep/wake regulatory regions apart from the tuberomammillary nucleus. All adenosine metabolic enzymes exhibited diurnal variations in their activity, albeit not in all brain regions. Activity of adenosine deaminase increased during the active period in the ventrolateral pre-optic area but decreased significantly in the basal forebrain. Enzymatic activity of adenosine kinase and cytosolic-5'-nucleotidase was higher during the active period in all brain regions tested. However, the activity of ecto-5'-nucleotidase was augmented during the active period only in the cerebral cortex. This diurnal variation may play a role in the regulation of adenosine in relationship to sleep and wakefulness across the day. In contrast, we found no changes specifically with sleep deprivation in the activity of any enzyme in any brain region. Thus, changes in adenosine with sleep deprivation are not a consequence of alterations in adenosine enzyme activity.  相似文献   
85.
86.
87.
Glutamate is the primary excitatory neurotransmitter in brain. By stimulating neuronal activity, glutamate increases cellular energy utilization, enhances ATP hydrolysis and promotes the formation of adenosine. Adenosine has receptor-mediated effects that reduce or oppose the excitatory effects of glutamate. As a possible mechanism for ethanol's ability to inhibit excitatory effects of glutamate and enhance inhibitory effects of adenosine, we tested the hypothesis that ethanol promotes [3H]glutamate uptake and inhibits [3H]adenosine uptake. Using primary cultures of rat astrocytes, we found that acute treatment with ethanol (50 mM, 30 min) inhibited [3H]glutamate uptake and reduced protein kinase C (PKC)-induced stimulation of [3H]glutamate uptake. Prolonged treatment (50 mM, 3 day) with ethanol, however, increased both [3H]glutamate uptake and PKC activity. Contrary to other cell types, neither acute or chronic ethanol exposure affected [3H]adenosine uptake in astrocytes. These data indicate that in rat cortical astrocytes ethanol affects [3H]glutamate uptake but not [3H]adenosine uptake by affecting PKC modulation of transporter activity.  相似文献   
88.
Acyl carrier protein (ACP) of Escherichia coli is a small acidic protein which functions as carrier of growing acyl chains during their biosynthesis and as donor of acyl chains during transfer to target molecules. This unique ACP of E. coli is expressed constitutively. In more complex bacteria, multiple ACPs are present, indicating a channeling of pools of multi-carbon units into different biosynthetic routes. In rhizobia, for example, besides the constitutive ACP (AcpP) involved in the biosynthesis and transfer of common fatty acids, three specialized ACPs have been reported: (1) the flavonoid-inducible nodulation protein NodF, (2) AcpXL that transfers 27-hydroxyoctacosanoic acid to a sugar backbone during lipid A biosynthesis, and (3) the RkpF protein which is required for the biosynthesis of rhizobial capsular polysaccharides. All three of those specialized rhizobial ACPs are required for the biosynthesis of cell-surface molecules that play a role in establishing the symbiotic relationship between rhizobia and their legume hosts. Surprisingly, the recently sequenced genomes from Mesorhizobium loti and Sinorhizobium meliloti suggest even more candidates for ACPs in rhizobia.  相似文献   
89.
Angiogenesis inhibitors have gained much public attention recently as anti-cancer agents and several are currently in clinical trials, including angiostatin (Phase I, Thomas Jefferson University Hospital, Philadelphia, PA). We report here the bowl-shaped structure of angiostatin kringles 1-3, the first multi-kringle structure to be determined. All three kringle lysine-binding sites contain a bound bicine molecule of crystallization while the former of kringle 2 and kringle 3 are cofacial. Moreover, the separation of the kringle 2 and kringle 3 lysiner binding sites is sufficient to accommodate the alpha-helix of the 30 residue peptide VEK-30 found in the kringle 2/VEK-30 complex. Together the three kringles produce a central cavity suggestive of a unique domain where they may function in concert.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号