首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   793篇
  免费   70篇
  2022年   4篇
  2021年   9篇
  2020年   6篇
  2019年   12篇
  2018年   8篇
  2017年   10篇
  2016年   18篇
  2015年   29篇
  2014年   34篇
  2013年   39篇
  2012年   39篇
  2011年   50篇
  2010年   32篇
  2009年   26篇
  2008年   32篇
  2007年   36篇
  2006年   34篇
  2005年   30篇
  2004年   36篇
  2003年   24篇
  2002年   23篇
  2001年   34篇
  2000年   33篇
  1999年   32篇
  1998年   16篇
  1997年   8篇
  1996年   18篇
  1995年   7篇
  1994年   11篇
  1993年   6篇
  1992年   21篇
  1991年   10篇
  1990年   8篇
  1989年   5篇
  1988年   10篇
  1987年   10篇
  1986年   15篇
  1985年   10篇
  1984年   5篇
  1983年   8篇
  1982年   7篇
  1981年   3篇
  1980年   6篇
  1979年   4篇
  1978年   3篇
  1977年   5篇
  1976年   3篇
  1974年   4篇
  1973年   4篇
  1970年   3篇
排序方式: 共有863条查询结果,搜索用时 15 毫秒
31.
32.
Water hyacinth Eichhornia crassipes is considered the most damaging aquatic weed in the world. However, few studies have quantified the impact of this weed economically and ecologically, and even fewer studies have quantified the benefits of its control. This paper focuses on water loss saving as the benefit derived from biological control of this plant between 1990 and 2013 at New Year’s Dam, Alicedale, Eastern Cape, South Africa. Estimates of water loss due to evapotranspiration from water hyacinth vary significantly; therefore, the study used three different rates, high, medium and low. A conservative raw agriculture value of R 0.26 per m3 was used to calculate the benefits derived by the water saved. The present benefit and cost values were determined using 10% and 5% discount rates. The benefit/cost ratio at the low evapotranspiration rate was less than one, implying that biological control was not economically viable but, at the higher evapotranspiration rates, the return justified the costs of biological control. However, at the marginal value product of water, the inclusion of the costs of damage to infrastructure, or the adverse effects of water hyacinth on biodiversity, would justify the use of biological control, even at the low transpiration rate.  相似文献   
33.
We report on a novel transgenic mouse model expressing human full‐length Tau with the Tau mutation A152T (hTauAT), a risk factor for FTD‐spectrum disorders including PSP and CBD. Brain neurons reveal pathological Tau conformation, hyperphosphorylation, mis‐sorting, aggregation, neuronal degeneration, and progressive loss, most prominently in area CA3 of the hippocampus. The mossy fiber pathway shows enhanced basal synaptic transmission without changes in short‐ or long‐term plasticity. In organotypic hippocampal slices, extracellular glutamate increases early above control levels, followed by a rise in neurotoxicity. These changes are normalized by inhibiting neurotransmitter release or by blocking voltage‐gated sodium channels. CA3 neurons show elevated intracellular calcium during rest and after activity induction which is sensitive to NR2B antagonizing drugs, demonstrating a pivotal role of extrasynaptic NMDA receptors. Slices show pronounced epileptiform activity and axonal sprouting of mossy fibers. Excitotoxic neuronal death is ameliorated by ceftriaxone, which stimulates astrocytic glutamate uptake via the transporter EAAT2/GLT1. In summary, hTauAT causes excitotoxicity mediated by NR2B‐containing NMDA receptors due to enhanced extracellular glutamate.  相似文献   
34.
Infection by the bacterium Listeria monocytogenes depends on host cell clathrin. To determine whether this requirement is widespread, we analyzed infection models using diverse bacteria. We demonstrated that bacteria that enter cells following binding to cellular receptors (termed "zippering" bacteria) invade in a clathrin-dependent manner. In contrast, bacteria that inject effector proteins into host cells in order to gain entry (termed "triggering" bacteria) invade in a clathrin-independent manner. Strikingly, enteropathogenic Escherichia coli (EPEC) required clathrin to form actin-rich pedestals in host cells beneath adhering bacteria, even though this pathogen remains extracellular. Furthermore, clathrin accumulation preceded the actin rearrangements necessary for Listeria entry. These data provide evidence for a clathrin-based entry pathway allowing internalization of large objects (bacteria and ligand-coated beads) and used by "zippering" bacteria as part of a general mechanism to invade host mammalian cells. We also revealed a nonendocytic role for clathrin required for extracellular EPEC infections.  相似文献   
35.
36.
The control of Spodoptera frugiperda is based on synthetic insecticides, so some alternatives are the use of entomopathogenic fungi (EF) and neem extract. The objective of the study was to evaluate in vitro effectiveness of native EF and neem extracts on S. frugiperda larvae. Six EF were identified by DNA sequencing of ITS regions from three EF (Fusarium solani, Metarrhizium robertsii, Nigrospora spherica and Penicillium citrinum). They were evaluated in concentrations of 1 × 10⁸ spores/ mL. In addition, a second bioassay was carried out evaluating only F. solani, M. robertsii and N. sphaerica and the addition of vegetable oil. On the other hand, extraction of secondary metabolites from neem seed (Azadirachta indica) was carried out by performing, mass (g) and solvent volume (mL ethanol and water) combinations, which were subjected to microwaves and ultrasound. Subsequently, these extracts were evaluated in concentrations of 3%, 4% and 5%. A survival analysis was performed for each of the bioassays. With respect to the results of the first bioassay, F. solani obtained a probability of survival of 0.476 on the seventh day, while in the second bioassay, M. robertsii obtained 0.488 survival probability. This suggests that the expected percentage of larvae that stay alive on the sixth day is 48.8%. However, in the evaluation of the neem extract the combination 1:12/70% to 4% caused 84% mortality of larvae. The use of native HE and neem extracts has potential for the control of S. frugiperda.  相似文献   
37.
A 1610-bp DNA duplex coding for human tissue-type plasminogen activator has been chemically synthesized using the phosphoramidite procedure, adapted for a custom-built gene synthesizer. The synthesizer, which was designed for both simplicity and speed, permits the rapid construction of relatively large genes and compares favorably in speed with alternative cDNA isolation procedures. The plasminogen activator gene has been expressed in mammalian cells and shown to produce authentic protein by an immuno-activity assay.  相似文献   
38.
Escherichia coli and Desulfovibrio desulfuricans reduce Tc(VII) (TcO(4)(-)) with formate or hydrogen as electron donors. The reaction is catalyzed by the hydrogenase component of the formate hydrogenlyase complex (FHL) of E. coli and is associated with a periplasmic hydrogenase activity in D. desulfuricans. Tc(VII) reduction in E. coli by H(2) and formate was either inhibited or repressed by 10 mM nitrate. By contrast, Tc(VII) reduction catalyzed by D. desulfuricans was less sensitive to nitrate when formate was the electron donor, and unaffected by 10 mM or 100 mM nitrate when H(2) was the electron donor. The optimum pH for Tc(VII) reduction by both organisms was 5.5 and the optimum temperature was 40 degrees C and 20 degrees C for E. coli and D. desulfuricans, respectively. Both strains had an apparent K(m) for Tc(VII) of 0.5 mM, but Tc(VII) was removed from a solution of 300 nM TcO(4)(-) within 30 h by D. desulfuricans at the expense of H(2). The greater bioprocess potential of D. desulfuricans was shown also by the K(s) for formate (>25 mM and 0.5 mM for E. coli and D. desulfuricans, respectively), attributable to the more accessible, periplasmic localization of the enzyme in the latter. The relative rates of Tc(VII) reduction for E. coli and D. desulfuricans (with H(2)) were 12.5 and 800 micromol Tc(VII) reduced/g biomass/h, but the use of an E. coli HycA mutant (which upregulates FHL activities by approx. 50%) had a similarly enhancing effect on the rate of Tc reduction. The more rapid reduction of Tc(VII) by D. desulfuricans compared with the E. coli strains was also shown using cells immobilized in a hollow-fiber reactor, in which the flow residence times sustaining steady-state removal of 80% of the radionuclide were 24.3 h for the wild-type E. coli, 4.25 h for the upregulated mutant, and 1.5 h for D. desulfuricans.  相似文献   
39.
The settlement and release of Ulva spores from chemically modified, micro-engineered surface topographies have been investigated using poly(dimethyl siloxane) elastomers (PDMSe) with varying additions of non-network forming poly(dimethyl siloxane) based oils. The topographic features were based on 5 microns wide pillars or ridges separated by 5, 10, or 20 microns wide channels. Pattern depths were 5 or 1.5 microns. Swimming spores showed no marked difference in settlement on smooth surfaces covered with excess PDMS oils. However, incorporation of oils significantly reduced settlement density on many of the surfaces with topographic features, in particular, the 5 microns wide and deep channels. Previous results, confirmed here, demonstrate preferences by the spores to settle in channels and against pillars with spatial dimensions of 5 microns, 10 microns and 20 microns. The combination of lubricity and pillars significantly reduced the number of attached spores compared to the control, smooth, unmodified PDMSe surfaces when exposed to turbulent flow in a flow channel. The results are discussed in relation to the energy needs for spores to adhere to various surface features and the concepts of ultrahydrophobic surfaces. A factorial, multi-level experimental design was analyzed and a 2nd order polynomial model was regressed for statistically significant effects and interactions to determine the magnitude and direction of influence on the spore density measurements between factor levels.  相似文献   
40.
Salmonella resides within host cells in a vacuole that it modifies through the action of virulence proteins called effectors. Here we examined the role of two related effectors, SopD and SopD2, in Salmonella pathogenesis. Salmonella enterica serovar Typhimurium (S. Typhimurium) mutants lacking either sopD or sopD2 were attenuated for replication in the spleens of infected mice when competed against wild-type bacteria in mixed infection experiments. A double mutant lacking both effector genes did not display an additive attenuation of virulence in these experiments. The double mutant also competed equally with both of the single mutants. Deletion of either effector impaired bacterial replication in mouse macrophages but not human epithelial cells. Deletion of sopD2 impaired Salmonella's ability to form tubular membrane filaments [Salmonella-induced filaments (Sifs)] in infected cells; the number of Sifs decreased, whereas the number of pseudo-Sifs (thought to be a precursor of Sifs) was increased. Transfection of HeLa cells with the effector SifA induced the formation of Sif-like tubules and these were observed in greater size and number after co-transfection of SifA with SopD2. In infected cells, SifA and SopD2 were localized both to Sifs and to pseudo-Sifs. In contrast, deletion of sopD had no effect on Sif formation. Our results indicate that both SopD and SopD2 contribute to virulence in mice and suggest a functional relationship between these two proteins during systemic infection of the host.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号