首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   965237篇
  免费   116155篇
  国内免费   585篇
  1081977篇
  2016年   10264篇
  2015年   15666篇
  2014年   17986篇
  2013年   25362篇
  2012年   28869篇
  2011年   28796篇
  2010年   19617篇
  2009年   18552篇
  2008年   26334篇
  2007年   27193篇
  2006年   25429篇
  2005年   24672篇
  2004年   24318篇
  2003年   23772篇
  2002年   23074篇
  2001年   39869篇
  2000年   40252篇
  1999年   32774篇
  1998年   12900篇
  1997年   13531篇
  1996年   13053篇
  1995年   12317篇
  1994年   12182篇
  1993年   12039篇
  1992年   28013篇
  1991年   27237篇
  1990年   26699篇
  1989年   26065篇
  1988年   24190篇
  1987年   23837篇
  1986年   21868篇
  1985年   22164篇
  1984年   18571篇
  1983年   16265篇
  1982年   13093篇
  1981年   11946篇
  1980年   11242篇
  1979年   18231篇
  1978年   14641篇
  1977年   13325篇
  1976年   12716篇
  1975年   13785篇
  1974年   14849篇
  1973年   14684篇
  1972年   13256篇
  1971年   12253篇
  1970年   10536篇
  1969年   10145篇
  1968年   9123篇
  1967年   8164篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
S J Henriksen  G Chouvet  F E Bloom 《Life sciences》1982,31(16-17):1785-1788
Recent immunohistochemical and radioimmunochemical observations have demonstrated a differential distribution of immunoreactive dynorphin (DYN) in rat brain. The presence of DYN immunoreactivity in a major intrinsic fiber pathway within the rat hippocampus (the mossy fiber system) has led us to evaluate the possible role of DYN and other closely related peptides in this structure. Single cell activity and hippocampal field potentials have been recorded from the CA1-CA3 cellular fields in halothane or urethane anesthetized rats. DYN, DYN1-13, DYN1-8, and alpha-neo-endorphin had an excitatory effect on most CA1-CA3 neurons encountered as has been previously observed for opiates and other opioid peptides. This response could be blocked by naloxone or by co-administration of Mg++ ion suggesting an indirect (synaptic) mechanism of excitation similar to that hypothetized for enkephalin. A significant number of CA3 neurons, however, exhibited a non-naloxone sensitive inhibitory response to DYN, related opioid peptides, and the kappa agonist WIN 35-197 (ethylketocyclazocine). Field potential analysis of CA1-CA3 neuronal responses to mossy fiber activation also indicated an excitatory, Mg++ reversible, action of iontophoretically applied DYN. These observations support our cytochemical and assay studies indicating diverse opioid systems within the rat hippocampus. In addition, these functional studies are congruent with other evidence suggesting multiple opioid mechanisms in this structure.  相似文献   
993.
The in situ assembly states of the glucose transport carrier protein in the plasma membrane and in the intracellular (microsomal) storage pool of rat adipocytes were assessed by studying radiation-induced inactivation of the D-glucose-sensitive cytochalasin B binding activities. High energy radiation inactivated the glucose-sensitive cytochalasin B binding of each of these membrane preparations by reducing the total number of the binding sites without affecting the dissociation constant. The reduction in total number of binding sites was analyzed as a function of radiation dose based on target theory, from which a radiation-sensitive mass (target size) was calculated. When the plasma membranes of insulin-treated adipocytes were used, a target size of approximately 58,000 daltons was obtained. For adipocyte microsomal membranes, we obtained target sizes of approximately 112,000 and 109,000 daltons prior to and after insulin treatment, respectively. In the case of microsomal membranes, however, inactivation data showed anomalously low radiation sensitivities at low radiation doses, which may be interpreted as indicating the presence of a radiation-sensitive inhibitor. These results suggest that the adipocyte glucose transporter occurs as a monomer in the plasma membrane while existing in the intracellular reserve pool either as a homodimer or as a stoichiometric complex with a protein of an approximately equal size.  相似文献   
994.
Peptide fragments derived from the NH2-terminus of corticotropin were found to exhibit widely differing degrees of stability to degradation by aminopeptidase M. Corticotropin itself was 135 times more stable than its NH2-terminal pentapeptide, and similar differences in stability were observed with peptides derived from the B-chain of bovine insulin. Enkephalin linked covalently to the A-chain of bovine insulin was at least 100 times more stable than the pentapeptide. The results demonstrate that the molecular size of a peptide is one factor that determines its NH2-terminal stability.  相似文献   
995.
A synthetic diet preparation supplemented with 10% by weight of either safflower oil, hydrogenated coconut oil containing 3% safflower oil, or 'max EPA' fish oil was fed to rats over a 8-week period. Serial measurements of serum fatty acids, serum thromboxane B2 and urinary prostaglandin excretion were taken during the treatment period to assess the rate of change in fatty acid composition and prostaglandin synthesis following dietary manipulation. There was no significant change in weight gain between the dietary groups during the treatment period. Significant changes in serum fatty acids occurred within 48 h of treatment, with the 'max EPA' oil group having arachidonic acid levels reduced by 23% (P less than 0.01) compared to the coconut oil group. Conversely, rats fed safflower oil had an 18% enhancement of arachidonic acid during the same time period. Whole blood synthesis of thromboxane B2 was significantly depressed (P less than 0.01) after 48 h in rats fed 'max EPA' oil compared to the safflower oil or coconut oil groups. This suppression reached a maximum of 65% (P less than 0.001) after 7 days of dietary 'max EPA' oil treatment. The safflower oil and coconut oil-fed groups showed the same levels of serum thromboxane B2 production over the treatment period. Urinary excretion of both 6-ketoprostaglandin F1 alpha and prostaglandin E2 varied significantly (P less than 0.01) between the groups after 7 days of dietary treatment. Rats fed 'max EPA' oil had depressed urinary prostanoid excretion compared to the safflower and coconut oil groups which remained very similar to each other. After the 8-week treatment period rats were killed and the phospholipid fatty acid composition and prostaglandin-generating capacity of platelets, aorta and renal tissue was examined. Prostanoid production by kidney cortex and medulla and segments of aorta was consistently suppressed in rats fed 'max EPA' oil. These observations correlated well with changes in the phospholipid fatty acid profiles in these tissues. This study shows rapid changes in serum fatty acids and thromboxane B2 generation following dietary manipulation, while changes in urinary excretion or prostanoid metabolites occur only after a longer time period.  相似文献   
996.
Regulation of heart rate was studied in rats receiving either i.v. saline at 64 microL/min or synthetic 28-residue rat atrial natriuretic peptide (ANF) at a dose sufficient to decrease mean arterial blood pressure by 10%. Autonomic influences were deduced from steady-state heart rate responses of each group to propranolol, atropine, or propranolol and atropine combined. A multiplicative model of heart rate control was used to derive quantitatively from the data the modulation of intrinsic heart rate by sympathetic and parasympathetic mechanisms. Animals receiving ANF showed a lower heart rate than control animals. This relative bradycardia was abolished by atropine. Blocking of sympathetic effects with propranolol had no effect on basal heart rate in either group, and atropinization led to significant increases in heart rate in both groups of rats. Mathematical analysis of the results showed that the bradycardia produced by ANF was due predominantly to a reduced intrinsic heart rate and to enhanced vagal inhibition of postganglionic sympathetic activity. Parasympathetic contribution to heart rate in the absence of sympathetic activity was negligible in control rats and small during ANF. We conclude that the major influences of ANF on heart rate control are a decrease of intrinsic heart rate and enhanced parasympathetic inhibition of postganglionic presynaptic sympathetic activity.  相似文献   
997.
I.J.A. Urban  D. de Wied 《Life sciences》1982,31(22):2417-2424
The influence of systemically administered Des-Tyr1-α-endorphin (DTαE), Des-Tyr1-γ-endorphin (DTγE) and haloperidol on electroencephalographic (EEG) activity of the lateral septum complex (LSC) and the frontal cortex was studied in male rats. DTαE (2 μg) significantly increased whereas DTγE (10 μg) significantly decreased the amounts of activity in the 5 Hz band. In addition, DTαE promoted production of 15 - 20 Hz activity, while DTγE decreased the amount of 20 - 30 Hz activity. EEG activity exhibited a marked variability which persisted throughout the recording session following administration of the peptides. Haloperidol markedly decreased the proportion of 10 - 15 Hz activity. The alterations in EEG of the frontal cortex were similar to those in LSC but less pronounced. The differences in the time course and frequency bands affected suggest that the effects of peptides and haloperidol on EEG activity of LSC are not mediated by the same mechanisms.  相似文献   
998.
999.
The cleavage of fatty acyl moieties from phospholipids was compared in intact cells and homogenates of mouse lymphocytes (thymocytes, spleen cells) and macrophages. Liberation of free arachidonic acid during incubations of intact cells was only detectable in the presence of albumin. Homogenization of prelabeled thymocytes and further incubation of these homogenates at 37 degrees C resulted in a pronounced decrease of phospholipid degradation and cleavage of arachidonoyl residues, while further incubation of homogenates from prelabeled macrophages produced a greatly increased phospholipid degradation. Homogenates of macrophages but not those of thymocytes contain substantial activities of phospholipase A2 detectable using exogenous radiolabeled substrates. These findings indicate that in thymocytes cleavage of arachidonic acid from phosphatidylcholine is an active process that is not catalyzed by phospholipase A2. Addition of CoA and lysophosphatidylethanolamine to prelabeled thymocyte homogenates induced a fast breakdown of phosphatidylcholine and transfer of arachidonic acid to phosphatidylethanolamine, as in seen during incubations of intact thymocytes or macrophages. The transfer is restricted to arachidonic acid and does not require addition of ATP. Sodium cholate, a known inhibitor of the acyl-CoA:lysophosphatide acyltransferase, completely inhibited this transfer reaction. These results suggest that the CoA-mediated, ATP-independent breakdown of phosphatidylcholine and transfer of arachidonic acid is catalyzed by the acyl-CoA:lysophosphatide acyltransferase operating in reverse.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号