首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   326篇
  免费   19篇
  345篇
  2015年   3篇
  2014年   10篇
  2013年   15篇
  2012年   19篇
  2011年   19篇
  2010年   8篇
  2009年   6篇
  2008年   25篇
  2007年   34篇
  2006年   21篇
  2005年   29篇
  2004年   34篇
  2003年   32篇
  2002年   26篇
  2001年   5篇
  2000年   5篇
  1999年   1篇
  1998年   5篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   6篇
  1992年   1篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1986年   4篇
  1984年   3篇
  1982年   5篇
  1980年   3篇
  1979年   1篇
  1976年   2篇
  1973年   1篇
  1970年   1篇
  1962年   1篇
  1957年   1篇
排序方式: 共有345条查询结果,搜索用时 0 毫秒
261.
Endoplasmic reticulum stress is emerging as an important modulator of different pathologies and as a mechanism contributing to cancer cell death in response to therapeutic agents. In several instances, oxidative stress and the onset of endoplasmic reticulum (ER) stress occur together; yet, the molecular events linking reactive oxygen species (ROS) to ER stress-mediated apoptosis are currently unknown. Here, we show that PERK (RNA-dependent protein kinase (PKR)-like ER kinase), a key ER stress sensor of the unfolded protein response, is uniquely enriched at the mitochondria-associated ER membranes (MAMs). PERK−/− cells display disturbed ER morphology and Ca2+ signaling as well as significantly weaker ER-mitochondria contact sites. Re-expression of a kinase-dead PERK mutant but not the cytoplasmic deletion mutant of PERK in PERK−/− cells re-establishes ER-mitochondria juxtapositions and mitochondrial sensitization to ROS-mediated stress. In contrast to the canonical ER stressor thapsigargin, during ROS-mediated ER stress, PERK contributes to apoptosis twofold by sustaining the levels of pro-apoptotic C/EBP homologous protein (CHOP) and by facilitating the propagation of ROS signals between the ER and mitochondria through its tethering function. Hence, this study reveals an unprecedented role of PERK as a MAMs component required to maintain the ER-mitochondria juxtapositions and propel ROS-mediated mitochondrial apoptosis. Furthermore, it suggests that loss of PERK may cause defects in cell death sensitivity in pathological conditions linked to ROS-mediated ER stress.  相似文献   
262.
263.
Xyloglucan endotransglycosylase/hydrolases (XTHs) are enzymes that cleave and rejoin xyloglucan chains. To trace the evolutionary origin of XTHs, we used Selaginella kraussiana, a representative of the most primitive land plants (Lycopodiophyta). A Southern blot with a digoxigenin-labeled probe, designed on the conserved catalytic site of XTHs, indicated nine genes. The presence of at least seven functional XTHs was detected by isoelectric focusing (IEF) followed by overlaying the gel with a XET-test paper. Together, these results indicate that XTHs are encoded by a multi-gene family that originated during or even before the colonization of land by plants.  相似文献   
264.
This study aimed at developing a shoulder finite element (FE) model able to simulate the dynamic behaviour and to predict injuries in case of side impacts. This model is an updated version of the initial Human Model for Safety (HUMOS) FE model of the human body. Simulations performed with the model have been compared to experimental results of side impact tests conducted previously at INRETS. The shoulder model response under lateral impact appears to be in good agreement with experimental data such as impact force and shoulder deflections for different impact speeds and impact directions. These results seem promising for future applications such as shoulder injury prediction in simulated car crashes.  相似文献   
265.
The banning in 2006 of the use of antibiotics as animal growth promoters in the European Union has increased demand from producers for alternative feed additives that can be used to improve animal production. This review gives an overview of the most common non-antibiotic feed additives already being used or that could potentially be used in ruminant nutrition. Probiotics, dicarboxylic acids, enzymes and plant-derived products including saponins, tannins and essential oils are presented. The known modes of action and effects of these additives on feed digestion and more especially on rumen fermentations are described. Their utility and limitations in field conditions for modern ruminant production systems and their compliance with the current legislation are also discussed.  相似文献   
266.
Benzyloxyphenethylpiperazines are a new class of high affinity NK1 receptor antagonists. Oral bioavailability and selectivity can be fine tuned by the nature of the substituents on the basic nitrogen atom. Addition of substituents with a carboxylic acid group led to very selective and orally active NK1 antagonists free of interaction with L-type calcium channels.  相似文献   
267.
Calcium influx into cardiac myocytes via voltage-gated Ca channels is a key step in initiating the contractile response. During prolonged depolarizations, toxic Ca(2+) overload is prevented by channel inactivation occurring through two different processes identified by their primary trigger: voltage or intracellular Ca(2+). In physiological situations, cardiac L-type (Ca(V)1.2) Ca(2+) channels inactivate primarily via Ca(2+)-dependent inactivation (CDI), while neuronal P/Q (Ca(V)2.1) Ca(2+) channels use preferentially voltage-dependent inactivation (VDI). In certain situations however, these two types of channels have been shown to be able to inactivate by both processes. From a structural view point, the rearrangement occurring during CDI and VDI is not precisely known, but functional studies have underlined the role played by at least 2 channel sequences: a C-terminal binding site for the Ca(2+) sensor calmodulin, essential for CDI, and the loop connecting domains I and II, essential for VDI. The conserved regulation of VDI and CDI by the auxiliary channel beta subunit strongly suggests that these two mechanisms may use a set of common protein-protein interactions that are influenced by the auxiliary subunit. We will review our current knowledge of these interactions. New data are presented on L-P/Q (Ca(V)1.2/Ca(V)2.1) channel chimera that confirm the role of the I-II loop in VDI and CDI, and reveal some of the essential steps in Ca(2+) channel inactivation.  相似文献   
268.
269.
Membrane-derived oligosaccharides are periplasmic constituents of Escherchia coli and other Gram-negative bacteria. Oligosaccharides in this family may be variously substituted with O-succinyl ester residues, and with sn-1-phosphoglycerol and phosphoethanolamine residues derived from membrane phospholipids. Membrane-derived oligosaccharides appear to be important in osmoregulation, because their synthesis is under strict control (Kennedy, E.P. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 1092-1095). Maximum rate of synthesis is at very low osmolarity of the medium. Phosphoglycerol residues are transferred from phosphatidylglycerol to membrane-derived oligosaccharides, or to certain beta-glucoside acceptors, in a reaction catalyzed by phosphoglycerol transferase I, an enzyme of the inner membrane (Jackson, B. J., and Kennedy, E.P. (1983) J. Biol. Chem. 258, 2394-2398). We now report that this enzyme catalyzes the transfer of phosphoglycerol residues to arbutin (p-hydroxyphenyl-beta-D-glucoside) added to the medium with Km similar to that observed with the cell-free enzyme. The active site of the enzyme must therefore be on the periplasmic face of the inner membrane. We assayed phosphoglycerol transferase I in vivo and found that it is present and completely active even in cells growing in medium of very high osmolarity, in which the synthesis of membrane-derived oligosaccharides is severely reduced. We conclude that osmotic regulation must occur at the stage of the synthesis of oligosaccharide chains. A study of the kinetics of transfer of phosphoglycerol residues to membrane-derived oligosaccharides in vivo revealed that synthesis of the polyglucose chains must stop abruptly upon transfer of cells from medium of low to high osmolarity, inconsistent with a model postulating simple dilution of some rate-limiting enzyme during growth at the higher osmolarity.  相似文献   
270.
The growth rate of Bacillus subtilis is lowered but the final cell yield is unchanged when certain concentrations of ethanol are present in the culture medium. At the concentration allowing growth at half-maximal rate, practically no spores are formed. Blockage of spore formation generally occurs at stage 0-I. Sensitivity to ethanol of the capacity to form spores is limited, in a nonsynchronized culture, to a period of at most 45 min around t1. Postexponential events such as excretion of certain enzymes and modification of ribonucleic acid polymerase are altered or suppressed in the presence of ethanol, possibly as the results of a physical change upon the cell membrane. In effect, ethanol is turning wild-type cells into phenocopies of spoO mutants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号