首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9954篇
  免费   879篇
  国内免费   836篇
  11669篇
  2024年   26篇
  2023年   155篇
  2022年   331篇
  2021年   571篇
  2020年   400篇
  2019年   435篇
  2018年   423篇
  2017年   307篇
  2016年   430篇
  2015年   612篇
  2014年   785篇
  2013年   756篇
  2012年   935篇
  2011年   783篇
  2010年   542篇
  2009年   427篇
  2008年   467篇
  2007年   501篇
  2006年   411篇
  2005年   351篇
  2004年   309篇
  2003年   241篇
  2002年   205篇
  2001年   175篇
  2000年   157篇
  1999年   154篇
  1998年   71篇
  1997年   69篇
  1996年   72篇
  1995年   52篇
  1994年   64篇
  1993年   51篇
  1992年   75篇
  1991年   59篇
  1990年   39篇
  1989年   51篇
  1988年   29篇
  1987年   33篇
  1986年   24篇
  1985年   26篇
  1984年   9篇
  1983年   11篇
  1982年   4篇
  1980年   5篇
  1979年   6篇
  1976年   5篇
  1973年   5篇
  1971年   4篇
  1970年   3篇
  1969年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Trichoderma harzianum is a soil-borne filamentous fungus that exhibits biological control properties because it parasitizes a large variety of phytopathogenic fungi. In this study the SOD gene was successfully transferred into the bio-control fungus Trichoderma harzianum with an efficiency of 60–110 transformants per 107 spores by using Agrobacterium tumefaciens-mediated transformation. Putative transformants were analyzed to test the transformation by the southern blot. Antifungal activities of the transformants were examined under abiotic stresses. The transformants were exposed to 40°C for three days and 2 mol/l NaCl at 27°C for 5–10 days to assay antifungal activities with Sclerotinia sclerotiorum. The inhibition rates of the transformants, comparing to Trichoderma harzianum with no SOD gene transferred, were respectively 83.96% after 40°C and 60.13% after 2 mol/l NaCl. The results showed that the SOD transformants had significantly higher resistance to heat and salt stress.  相似文献   
992.
Methionine aminopeptidase (MetAP) carries out the cotranslational N-terminal methionine excision and is essential for bacterial survival. Mycobacterium tuberculosis expresses two MetAPs, MtMetAP1a and MtMetAP1c, at different levels in growing and stationary phases, and both are potential targets to develop novel antitubercular therapeutics. Recombinant MtMetAP1a was purified as an apoenzyme, and metal binding and activation were characterized with an activity assay using a fluorogenic substrate. Ni(II), Co(II) and Fe(II) bound tightly at micromolar concentrations, and Ni(II) was the most efficient activator for the MetAP-catalyzed substrate hydrolysis. Although the characteristics of metal binding and activation are similar to MtMetAP1c we characterized before, MtMetAP1a was significantly more active, and more importantly, a set of inhibitors displayed completely different inhibitory profiles on the two mycobacterial MetAPs in both potency and metalloform selectivity. The differences in catalysis and inhibition predicted the significant differences in active site structure.  相似文献   
993.
Pyridopyridazine antagonists of the hedgehog signaling pathway are described. Designed to optimize our previously described phthalazine smoothened antagonists, a representative compound eliminates a PXR liability while retaining potency and in vitro metabolic stability. Moreover, the compound has improved efficacy in a hedgehog/smoothened signaling mouse pharmacodynamic model.  相似文献   
994.
The concept of regenerating diseased myocardium by implanting engineered heart tissue (EHT) is intriguing. Yet it was limited by immune rejection and difficulties to be generated at a size with contractile properties. Somatic cell nuclear transfer is proposed as a practical strategy for generating autologous histocompatible stem (nuclear transferred embryonic stem [NT‐ES]) cells to treat diseases. Nevertheless, it is controversial as NT‐ES cells may pose risks in their therapeutic application. EHT from NT‐ES cell‐derived cardiomyocytes was generated through a series of improved techniques in a self‐made mould to keep the EHTs from contraction and provide static stretch simultaneously. After 7 days of static and mechanical stretching, respectively, the EHTs were implanted to the infarcted rat heart. Four weeks after transplantation, the suitability of EHT in heart muscle repair after myocardial infarction was evaluated by histological examination, echocardiography and multielectrode array measurement. The results showed that large (thickness/diameter, 2–4 mm/10 mm) spontaneously contracting EHTs was generated successfully. The EHTs, which were derived from NT‐ES cells, inte grated and electrically coupled to host myocardium and exerted beneficial effects on the left ventricular function of infarcted rat heart. No teratoma formation was observed in the rat heart implanted with EHTs for 4 weeks. NT‐ES cells can be used as a source of seeding cells for cardiac tissue engineering. Large contractile EHT grafts can be constructed in vitro with the ability to survive after implantation and improve myocardial performance of infarcted rat hearts.  相似文献   
995.
The influence of exogenous spermidine (Spd) on arginine decarboxylase (ADC), ornithine decarboxylase (ODC), polyamine oxidase (PAO) activities and polyamines (PAs), proline contents in water hyacinth leaves under Mercury (Hg) stress was investigated after 6 days treatment. The results showed that free putrescine (Put) content increased, the contents of free spermidine (Spd) and spermine (Spm) and the (Spd + Spm)/Put ratio in water hyacinth leaves decreased significantly with the increase of the Hg concentrations. Hg stress also disturbed the activities of ADC, ODC and PAO and caused changes on proline content. Compared to the Hg-treatment only, exogenous Spd (0.1 mM) significantly reduced the accumulation of free Put, increased the contents of free Spd and Spm and the ratio of (Spd + Spm)/Put in water hyacinth leaves. Furthermore, exogenous Spd enhanced the activities of ADC, ODC and PAO and significantly increased proline content. The PS-conjugated PAs and PIS-bound PAs changed in the same trend as free PAs. These results suggest that exogenous Spd can alleviate the metabolic disturbance of polyamines caused by Hg in water hyacinth leaves.  相似文献   
996.
High-density functional gene arrays have become a powerful tool for environmental microbial detection and characterization. However, microarray data normalization and comparison for this type of microarray remain a challenge in environmental microbiology studies because some commonly used normalization methods (e.g., genomic DNA) for the study of pure cultures are not applicable. In this study, we developed a common oligonucleotide reference standard (CORS) method to address this problem. A unique 50-mer reference oligonucleotide probe was selected to co-spot with gene probes for each array feature. The complementary sequence was synthesized and labeled for use as the reference target, which was then spiked and cohybridized with each sample. The signal intensity of this reference target was used for microarray data normalization and comparison. The optimal amount or concentration were determined to be ca. 0.5 to 2.5% of a gene probe for the reference probe and ca. 0.25 to 1.25 fmol/μl for the reference target based on our evaluation with a pilot array. The CORS method was then compared to dye swap and genomic DNA normalization methods using the Desulfovibrio vulgaris whole-genome microarray, and significant linear correlations were observed. This method was then applied to a functional gene array to analyze soil microbial communities, and the results demonstrated that the variation of signal intensities among replicates based on the CORS method was significantly lower than the total intensity normalization method. The developed CORS provides a useful approach for microarray data normalization and comparison for studies of complex microbial communities.Microarray-based technology has become a robust genomic tool to detect, track, and profile hundreds to thousands of different microbial populations simultaneously in complex environments such as soils and sediments. For example, GeoChip, a comprehensive functional gene array, has been developed for investigating biogeochemical, ecological, and environmental processes (12, 18, 23, 27, 29, 32). Although a massive amount of microarray data can be generated rapidly, one of the bottlenecks in using microarrays for environmental microbial community studies is the lack of an appropriate standard for data comparison and normalization (6). Currently, it is difficult to compare microarray data across different sites, experiments, laboratories, and/or time periods (10). This limits the power of the technology to address ecological and environmental questions.In pure culture-based functional genomics studies, genomic DNAs (gDNAs) have been used as a common reference for hybridizations in which the same amount of gDNAs are used to cohybridize with each target cDNA sample and then to normalize different target cDNAs based on the gDNA standard (4, 5, 8, 9, 19, 21, 23). Several normalization methods such as scale normalization, quantile normalization, and Lowess normalization have been used for gene expression studies (2). Using the gDNA standard method can minimize or eliminate differences in target cDNA quantity, spot morphology, uneven hybridization, labeling, and sequence-specific hybridization behaviors (5), and this allows the comparison of microarray data across different sites, laboratories, experiments, and/or times. The main rationale for gDNA as a common reference is that it provides complete coverage for all genes represented on the array because the DNA composition from a particular organism should be identical across different treatment samples even though RNA expression is different (8). However, this approach is not applicable to microbial community studies because not all communities have identical DNA compositions. Pooling of equal amounts of gDNA or RNA from every target sample to make a common sample could be used as an alternative reference for cohybridization (1, 22). However, the disadvantage of the sample pooling approach is that samples do not provide large amounts of DNA or RNA in a reliable and reproducible way. For example, groundwater samples usually have a very low biomass and thus would not provide enough DNA for pooling. In addition, the sample pool itself is uncharacterized, and gene abundance may be diluted out so that insufficient DNA is present to result in a positive signal some array features, especially for those genes in low abundance. Moreover, a new sample pool would be required for every new experiment, making comparison across experiments difficult. Thus, other approaches need to be developed for microbial community studies.Dudley et al. (7) used a 25-mer oligonucleotide that matched a small portion of the parental EST clone vector contained in every PCR product printed on the array for normalization of pure culture RNA expression. Although the oligonucleotide generated a stable hybridization signal on every array feature, this method requires a universal sequence tag as a “capture” sequence, limiting its general use in microbial community studies. Thus, in the present study, we developed a common oligonucleotide reference standard (CORS) approach by co-spotting a common oligonucleotide with each array feature to improve the accuracy and comparability of microarray data for microbial community studies. This method was evaluated by using a pilot array, a whole-genome array, and a functional gene array, and all results demonstrate that the developed CORS is a reliable and reproducible method for microarray data normalization and comparison for microbial community studies.  相似文献   
997.
This paper reports on a hydroponics experiment that was conducted to investigate the effect of inorganic arsenics on the seedlings of the rice cultivar Shanyou63. The seedlings were subjected to two treatments, i.e., As(III) and As(V). The results showed that the morphological traits of the seedlings were significantly altered after the arsenic treatments. Analysis of nitrogen, phosphorus, potassium, and arsenic contents of the roots and leaves of the seedlings indicated that the absorption of phosphorus and potassium was mainly affected by As(III), while that of nitrogen was mainly affected by As(V). The expression of 12 genes involved in the absorption and utilization of nitrogen, phosphorus, and potassium were all observed to be down-regulated after the arsenic treatments. As(V) significantly affected the absorption and utilization of nitrogen, while As(III) significantly affected those of phosphorus and potassium. The result obtained by real-time FQ-PCR regarding the difference in the gene expressions agreed with that of our hydroponics experiment.  相似文献   
998.
999.
1000.
Plant senescence plays diverse important roles in development and environmental responses.However,the molecular basis of plant senescence is remained largely unknown.A rice spontaneous mutant with the character of early senescence and male sterility (sms) was found in the breeding line NT10-748.In order to identify the gene SMS1 and the underlying mechanism,we preliminarily analyzed physiological and biochemical phenotypes of the mutant.The mutant contained lower chlorophyll content compared with the wild type control and was severe male sterile with lower pollen viability.Genetic analysis showed that the mutant was controlled by a single recessive gene.By the map-based cloning approach,we fine-mapped SMS1 to a 67 kb region between the markers Z3-4 and Z1-1 on chromosome 8 using 1,074 F2 recessive plants derived from the cross between the mutant sms1 (japonica) × Zhenshan 97 (indica),where no known gene involved in senescence or male sterility has been identified.Therefore the SMS1 gene will be a novel gene that regulates the two developmental processes.The further cloning and functional analysis of the SMS1 gene is under way.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号