首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   2篇
  2018年   2篇
  2015年   4篇
  2014年   4篇
  2013年   1篇
  2012年   13篇
  2011年   8篇
  2010年   3篇
  2009年   4篇
  2008年   8篇
  2007年   9篇
  2006年   5篇
  2005年   13篇
  2004年   9篇
  2003年   9篇
  2002年   4篇
  2000年   2篇
  1999年   1篇
  1994年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1977年   1篇
  1976年   5篇
  1975年   3篇
  1974年   1篇
  1973年   5篇
  1972年   3篇
  1971年   4篇
  1970年   2篇
  1969年   3篇
排序方式: 共有130条查询结果,搜索用时 31 毫秒
21.
When lodgepole pines (Pinus contorta Douglas ex Louden var. latifolia Engelm. ex S. Watson) that are killed by the mountain pine beetle (Dendroctonus ponderosae) and its fungal associates are not harvested, fungal decay can affect wood and fibre properties. Ophiostomatoids stain sapwood but do not affect the structural properties of wood. In contrast, white or brown decay basidiomycetes degrade wood. We isolated both staining and decay fungi from 300 lodgepole pine trees killed by mountain pine beetle at green, red, and grey stages at 10 sites across British Columbia. We retained 224 basidiomycete isolates that we classified into 34 species using morphological and physiological characteristics and rDNA large subunit sequences. The number of basidiomycete species varied from 4 to 14 species per site. We assessed the ability of these fungi to degrade both pine sapwood and heartwood using the soil jar decay test. The highest wood mass losses for both sapwood and heartwood were measured for the brown rot species Fomitopsis pinicola and the white rot Metulodontia and Ganoderma species. The sap rot species Trichaptum abietinum was more damaging for sapwood than for heartwood. A number of species caused more than 50% wood mass losses after 12 weeks at room temperature, suggesting that beetle-killed trees can rapidly lose market value due to degradation of wood structural components.  相似文献   
22.
Wu GQ  Jia BY  Li JJ  Fu XW  Zhou GB  Hou YP  Zhu SE 《Theriogenology》2011,76(5):785-793
The objective was to determine whether adding L-carnitine in IVM/IVC medium enhanced maturation and developmental competence of porcine oocytes in vitro. Oocyte maturation rates did not differ significantly among groups supplemented with 0, 0.25, 0.5, or 1 mg/mL of L-carnitine added during IVM (although 2 mg/mL of L-carnitine reduced maturation rate). Compared with control oocytes, those treated with 0.5 mg/mL of L-carnitine during IVM had greater (P < 0.05) rates of blastocyst formation after parthenogenetic activation, and these blastocysts had less (P < 0.05) apoptosis. Adding 0.5 mg/mL of L-carnitine during IVM also significantly reduced intracellular reactive oxygen species (ROS), and increased glutathione (GSH) concentrations. With or without glucose supplementation, 0.5 mg/mL of L-carnitine in the IVM medium significantly hastened nuclear maturation of oocytes. Moreover, supplementing the IVM medium with either glucose or L-carnitine increased (P < 0.05) percentages of oocytes that reached the metaphase II (MII) stage, relative to a control group. Final maturation rates in IVM medium containing either glucose or L-carnitine were not significantly different. Adding L-carnitine (0 to 2 mg/mL) to IVC medium for activated porcine oocytes did not significantly affect development. However, 0.5 mg/mL of L-carnitine in IVC medium significantly reduced reactive oxygen species levels and apoptosis in activated blastocysts, although glutathione concentrations were not significantly altered. In conclusion, adding L-carnitine during IVM/IVC improved developmental potential of porcine oocytes, and also the quality of parthenogenetic embryos, probably by accelerating nuclear maturation, and preventing oxidative damage and apoptosis.  相似文献   
23.
Sinomenine, the main alkaloid extracted from the medicinal plant Sinomenium acutum, is known for its anti-inflammatory effects. Recent studies have suggested its anti-cancer effect in synovial sarcoma, lung cancer and hepatic cancer. However, the underlying molecular mechanism for its anti-cancer effect still remains unclear. This study investigated the anti-tumor activity of sinomenine hydrochloride (SH), a hydrochloride form of sinomenine, in human breast cancer cells in vitro and in vivo. We found that SH potently inhibited cell viability of a broad panel of breast cancer cell lines. Two representative breast cancer cell lines, namely ER(−)/PR(−) MDA-MB-231 and ER(+)/PR(+) MCF-7, were used for further investigation. The results showed that SH induced G1/S cell cycle arrest, caused apoptosis and induced ATM/Chk2- and ATR/Chk1-mediated DNA-damage response in MDA-MB-231 and MCF-7. The anti-cancer effect of SH was regulated by increased expression levels of p-ERK, p-JNK and p-38 MAPK. Further studies showed that SH resulted in an increase in reactive oxygen species (ROS) and inhibition of ROS by N-acetyl-L-cysteine (NAC) almost blocked SH-induced DNA damage but only mitigated SH-induced MAPK expression changes, suggesting that both ROS-dependent and -independent pathways were involved in MAPK-mediated SH-induced breast cancer cell death. The in vivo study demonstrated that SH effectively inhibited tumor growth without showing significant toxicity. In conclusion, SH induced breast cancer cell death through ROS-dependent and -independent pathways with an upregulation of MAPKs, indicating that SH may be a potential anti-tumor drug for breast cancer treatment.In recent decades, breast cancer is increasing in both developed and developing countries.1, 2, 3 Breast cancer has become the most common cancer and the leading cause of death in women all over the world.4 Although current strategies targeting breast cancer have improved markedly, breast cancer patients often develops metastasis5 and drug resistance.6 Therefore, it is necessary to search for new effective therapies for breast cancer treatment.Plants are one of the most important sources of compounds for chemoprevention and >60% of cancer therapeutics on the market or in preclinical trials are based on natural products.7, 8 The medicinal plant Sinomenium acutum Rehd. et Wils. (Fam. Menispermaceae) has been used to effectively treat rheumatoid arthritis for centuries in the Far East.9 Since its main effective component sinomenine (7,8-didehydro-4-hydroxy-3,7-dimethoxy-17-methylmorphinan-6-one, C19H23NO4, molecular weight: 329.38 Da, Figure 1a), a pure alkaloid, was extracted from the plant, numerous studies have been conducted on its underlying mechanisms for rheumatoid arthritis treatment10, 11 and other possible pharmacological effects, such as attenuation of ischemia/reperfusion injury,12, 13 treatment of neurodegenerative disorders14 and reduction of analgesic tolerance.15 Sinomenine hydrochloride (SH, Figure 1b), a hydrochloride chemical form of sinomenine, is widely used in clinical treatment of rheumatoid diseases for its anti-inflammatory and anti-immune effects.16 Recently, its anti-tumor activity has been found in synovial sarcoma, lung cancer and hepatic cancer;17, 18, 19 however, the molecular mechanisms and the signaling pathways of SH against cancer are still not clarified, and no studies have investigated whether SH could induce breast cancer cell death.Open in a separate windowFigure 1SH inhibited human breast cancer cell viability. Chemical structures of (a) sinomenine and (b) SH. (c) A panel of human breast cancer cell lines (MDA-MB-231, MCF-7, SK-BR-3, ZR-75-30, BT474 and T47D) were treated with SH (0, 0.1, 0.5 and 5.0 μmol/ml) for 48 h. Cell viability was measured by MTT assay. (d) Time-dependent inhibition of SH was evaluated by MTT assay. Data are represented as mean±S.D. of three independent experiments. *P <0.05, #P <0.01, SH-treated group compared with the untreated control group. (e) Cell colony formation was evaluated by clonogenic assay. (f) Morphology changes of breast cancer cells treated with SH. Representative data from three independent experiments are shownThere exist seven classes of mitogen-activated protein kinase (MAPK) intracellular signaling cascades, and four of them are implicated in breast diseases and function in mammary epithelial cells, including the extracellular-regulated kinase (ERK)1/2 pathway, the c-Jun N-terminal kinase (JNK) pathway, the p38 MAPK pathway and the ERK5 pathway.20 In this study, we especially focused on three prominent MAPK pathways, namely ERK1/2, JNK and p38. Milde-Langosch et al.21 have pointed out in a clinical study that high phosphorylated ERK proteins are good prognostic indicators in breast cancer. Sustained phosphorylation of p38 and JNK in breast cancer cells are also involved in anti-cancer treatment.22 Considering the important roles of MAPKs in breast cancer progression and cell proliferation, we hypothesized that SH inhibited breast cancer growth via modulation of MAPK pathways.In this study, we first demonstrated the anti-proliferative effect of SH on breast cancer cells in vitro and in vivo. We found that SH induced G1/S cell cycle arrest, caused cell apoptosis and triggered oxidative DNA damage in breast cancer cells. The results also demonstrated that SH induced breast cancer cell death by upregulating MAPK pathways and increasing intracellular reactive oxygen species (ROS) generation. The ROS scavenger N-acetyl-L-cysteine (NAC) almost blocked SH-induced DNA damage but only mitigated SH-induced MAPK expression changes, indicating that both ROS-dependent and -independent pathways were involved in the MAPK-mediated anti-cancer effect of SH.  相似文献   
24.
We performed a genome-wide QTL scan for production traits in a line cross between Duroc and Pietrain breeds of pigs, which included 585 F(2) progeny produced from 31 full-sib families genotyped with 106 informative microsatellites. A linkage map covering all 18 autosomes and spanning 1987 Kosambi cM was constructed. Thirty-five phenotypic traits including body weight, growth, carcass composition and meat quality traits were analysed using least square regression interval mapping. Twenty-four QTL exceeded the genome-wide significance threshold, while 47 QTL reached the suggestive threshold. These QTL were located at 28 genomic regions on 16 autosomal chromosomes and QTL in 11 regions were significant at the genome-wide level. A QTL affecting pH value in loin was detected on SSC1 between marker-interval S0312-S0113 with strong statistical support (P < 3.0 x 10(-14)); this QTL was also associated with meat colour and conductivity. QTL for carcass composition and average daily gain was also found on SSC1, suggesting multiple QTL. Seventeen genomic segments had only a single QTL that reached at least suggestive significance. Forty QTL exhibited additive inheritance whereas 31 QTL showed (over-) dominance effects. Two QTL for trait backfat thickness were detected on SSC2; a significant paternal effect was found for a QTL in the IGF2 region while another QTL in the middle of SSC2 showed Mendelian expression.  相似文献   
25.
The use of an immobilized-cell reactor for simultaneous carbon–nitrogen removal in wastewater with the monitoring of oxidation–reduction potential (ORP) in an intermittent aeration (IA) process was investigated. Under alternating aerated and nonaerated conditions, the ORP-time profile showed distinctive turning points that directly correlated with changes in the system chemistry and biological activity. The aeration ratio, defined as aeration time/cycle time, was optimum at 50% for obtaining the maximum efficiency of denitrification accompanied by sufficient nitrification. High simultaneous carbon–nitrogen removal efficiency could be achieved using the immobilized-cell reactor by applying the IA process. More than 90% of COD-removal efficiency and over 80% of total-nitrogen-removal efficiency were obtained using three aerobic–anoxic cycles per day at an aeration ratio of 50% and with a hydraulic retention time of 10 h. Journal of Industrial Microbiology & Biotechnology (2000) 25, 229–234. Received 26 January 2000/ Accepted in revised form 08 August 2000  相似文献   
26.
27.
28.
Several reports have suggested that mesenchymal stem cells (MSCs) could exert a potent immunosuppressive effect in vitro, and thus may have a therapeutic potential for T cell-dependent pathologies. We aimed to establish whether MSCs could be used to control graft-vs-host disease (GVHD), a major cause of morbidity and mortality after allogeneic hemopoietic stem cell transplantation. From C57BL/6 and BALB/c mouse bone marrow cells, we purified and expanded MSCs characterized by the lack of expression of CD45 and CD11b molecules, their typical spindle-shaped morphology, together with their ability to differentiate into osteogenic, chondrogenic, and adipogenic cells. These MSCs suppressed alloantigen-induced T cell proliferation in vitro in a dose-dependent manner, independently of their MHC haplotype. However, when MSCs were added to a bone marrow transplant at a MSCs:T cells ratio that provided a strong inhibition of the allogeneic responses in vitro, they yielded no clinical benefit on the incidence or severity of GVHD. The absence of clinical effect was not due to MSC rejection because they still could be detected in grafted animals, but rather to an absence of suppressive effect on donor T cell division in vivo. Thus, in these murine models, experimental data do not support a significant immunosuppressive effect of MSCs in vivo for the treatment of GVHD.  相似文献   
29.
Insulin resistance plays an important role in the development of type 2 diabetes mellitus. Scopoletin, a phenolic coumarin, is reported to regulate hyperglycemia and diabetes. To examine its effect on insulin resistance, we treated high-glucose-induced, insulin-resistant HepG2 cells with scopoletin and measured phosphatidylinositol 3-kinase (PI3?K)-linked protein kinase B (Akt/PKB) phosphorylation. Scopoletin significantly stimulated the reactivation of insulin-mediated Akt/PKB phosphorylation. This effect was blocked by LY294002, a specific PI3?K inhibitor. The ability of scopoletin to activate insulin-mediated Akt/PKB was greater than that of rosiglitazone, a thiazolidinedione, and scopoletin was less adipogenic than rosiglitazone, as shown by the extent of lipid accumulation in differentiated adipocytes. Scopoletin increased the gene expression of both peroxisome proliferator-activated receptor γ2 (PPARγ2), a target receptor for rosiglitazone, and adipocyte-specific fatty acid binding protein, but not to the level induced by rosiglitazone. However, the PPARγ2 protein level was increased equally by rosiglitazone and scopoletin in differentiated adipocytes. Our results suggest that scopoletin can ameliorate insulin resistance in part by upregulating PPARγ2 expression. With its lower adipogenic property, scopoletin may be a useful candidate for managing metabolic disorders, including type 2 diabetes mellitus.  相似文献   
30.

Background

CASTLE compared the efficacy of atazanavir/ritonavir with lopinavir/ritonavir, each in combination with tenofovir-emtricitabine in ARV-naïve subjects from 5 continents.

Objectives

Determine the baseline rate and clinical significance of TDR mutations using ultra-deep sequencing (UDS) in ARV-naïve subjects in CASTLE.

Methods

A case control study was performed on baseline samples for all 53 subjects with virologic failures (VF) at Week 48 and 95 subjects with virologic successes (VS) randomly selected and matched by CD4 count and viral load. UDS was performed using 454 Life Sciences/Roche technology.

Results

Of 148 samples, 141 had successful UDS (86 subtype B, 55 non-B subtypes). Overall, 30.5% of subjects had a TDR mutation at baseline; 15.6% only had TDR(s) at <20% of the viral population. There was no difference in the rate of TDRs by B (30.2%) or non-B subtypes (30.9%). VF (51) and VS (90) had similar rates of any TDRs (25.5% vs. 33.3%), NNRTI TDRs (11.1% vs.11.8%) and NRTI TDRs (24.4% vs. 25.5%). Of 9 (6.4%) subjects with M184V/I (7 at <20% levels), 6 experienced VF. 16 (11.3%) subjects had multiple TAMs, and 7 experienced VF. 3 (2.1%) subjects had both multiple TAMs+M184V, and all experienced VF. Of 14 (9.9%) subjects with PI TDRs (11 at <20% levels): only 1 experienced virologic failure. The majority of PI TDRs were found in isolation (e.g. 46I) at <20% levels, and had low resistance algorithm scores.

Conclusion

Among a representative sample of ARV-naïve subjects in CASTLE, TDR mutations were common (30.5%); B and non-B subtypes had similar rates of TDRs. Subjects with multiple PI TDRs were infrequent. Overall, TDRs did not affect virologic response for subjects on a boosted PI by week 48; however, a small subset of subjects with extensive NRTI backbone TDR patterns experienced virologic failure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号