首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2713篇
  免费   284篇
  2021年   39篇
  2020年   21篇
  2019年   20篇
  2018年   40篇
  2017年   32篇
  2016年   49篇
  2015年   85篇
  2014年   99篇
  2013年   102篇
  2012年   147篇
  2011年   146篇
  2010年   86篇
  2009年   67篇
  2008年   91篇
  2007年   121篇
  2006年   101篇
  2005年   101篇
  2004年   107篇
  2003年   118篇
  2002年   124篇
  2001年   88篇
  2000年   78篇
  1999年   66篇
  1998年   42篇
  1997年   41篇
  1996年   50篇
  1995年   39篇
  1994年   33篇
  1993年   52篇
  1992年   60篇
  1991年   67篇
  1990年   52篇
  1989年   53篇
  1988年   34篇
  1987年   37篇
  1986年   44篇
  1985年   43篇
  1984年   28篇
  1983年   21篇
  1982年   30篇
  1981年   26篇
  1979年   24篇
  1978年   21篇
  1977年   24篇
  1976年   22篇
  1975年   18篇
  1974年   23篇
  1973年   21篇
  1972年   18篇
  1969年   19篇
排序方式: 共有2997条查询结果,搜索用时 156 毫秒
991.
A human genome-wide linkage scan for obesity identified a linkage peak on chromosome 5q13-15. Positional cloning revealed an association of a rare haplotype to high body-mass index (BMI) in males but not?females. The risk locus contains a single gene, "arrestin domain-containing 3" (ARRDC3), an uncharacterized α-arrestin. Inactivating Arrdc3 in mice led to a striking resistance to obesity, with greater impact on male mice. Mice with decreased ARRDC3 levels were protected from obesity due to increased energy expenditure through increased activity levels and increased thermogenesis of both brown and white adipose tissues. ARRDC3 interacted directly with β-adrenergic receptors, and loss of ARRDC3 increased the response to β-adrenergic stimulation in isolated adipose tissue. These results demonstrate that ARRDC3 is a gender-sensitive regulator of obesity and energy expenditure and reveal?a surprising diversity for arrestin family protein functions.  相似文献   
992.
993.
Ferritin, the major intracellular iron-storage protein, is made of 24 subunits of two types, H and L. Besides regulating intracellular iron homeostasis, it has been found that ferritin, in particular the H subunit (FHC), is involved in different biological events such as cell differentiation and pathologic states (i.e., neurodegeneration and cancer). This study is aimed at investigating the whole-cell proteome of FHC-expressing and sh-RNA-silenced human metastatic melanoma cells (MM07(m)) in the attempt to identify and classify the highest number of proteins directly or indirectly controlled by the FHC. We identified about 200 differentially expressed proteins and classified them in clusters on the basis of their functions, as proteins involved in metabolic processes, cell adhesion, migration, and proliferation processes. Some of them have captured our attention because of their involvement in metabolic pathways related to tumor progression and metastasis. In vitro assays confirmed that the FHC-silenced MM07(m) cells are characterized by a decreased growth activity, a reduced invasiveness, and a reduced cell adhesion capability. Moreover, nude mice (CD1 nu/nu), subcutaneously injected with FHC-silenced MM07(m) cells, showed a remarkable 4-fold reduction of their tumor growth capacity compared to those who received the FHC-unsilenced MM07(m) counterpart. In conclusion, these data indicate that gene silencing technology, coupled to proteomic analysis, is a powerful tool for a better understanding of H ferritin signaling pathways and lend support to the hypothesis that specific targeting of this gene might be an attractive and potentially effective strategy for the management of metastatic melanoma.  相似文献   
994.
A selective method for the enrichment of O-GlcNAcylated peptides using a novel CLICK chemistry reagent is described. Peptides modified by O-GlcNAc were enzymatically labeled with N-azidoacetylgalactosamine. The azide was then reacted with a phospho-alkyne using CLICK chemistry and O-GlcNAcGalNAzPO(4)-containing peptides were enriched using titanium dioxide chromatography. Modified peptides were analyzed using a combination of higher energy collision dissociation for identification and electron transfer dissociation to localize the site of O-GlcNAc attachment. The enrichment method was developed and optimized using an alpha-crystallin standard protein and then applied to a soluble protein preparation of mouse brain tissue and a nuclear preparation generated from HeLa cells. A total of 42 unique O-GlcNAcylated peptides were identified, including 7 novel O-GlcNAc sites.  相似文献   
995.
Protein phosphorylation and glycosylation are the most common post-translational modifications observed in biology, frequently on the same protein. Assembly protein AP180 is a synapse-specific phosphoprotein and O-linked beta-N-acetylglucosamine (O-GlcNAc) modified glycoprotein. AP180 is involved in the assembly of clathrin coated vesicles in synaptic vesicle endocytosis. Unlike other types of O-glycosylation, O-GlcNAc is nucleocytoplasmic and reversible. It was thought to be a terminal modification, that is, the O-GlcNAc was not found to be additionally modified in any way. We now show that AP180 purified from rat brain contains a phosphorylated O-GlcNAc (O-GlcNAc-P) within a highly conserved sequence. O-GlcNAc or O-GlcNAc-P, but not phosphorylation alone, was found at Thr-310. Analysis of synthetic GlcNAc-6-P produced identical fragmentation products to GlcNAc-P from AP180. Direct O-linkage of GlcNAc-P to a Thr residue was confirmed by electron transfer dissociation MS. A second AP180 tryptic peptide was also glycosyl phosphorylated, but the site of modification was not assigned. Sequence similarities suggest there may be a common motif within AP180 involving glycosyl phosphorylation and dual flanking phosphorylation sites within 4 amino acid residues. This novel type of protein glycosyl phosphorylation adds a new signaling mechanism to the regulation of neurotransmission and more complexity to the study of O-GlcNAc modification.  相似文献   
996.
In recent years, there has been an increase in the perceived threat of biological agents being used against civilian populations. This has prompted an urgent need for the development and procurement of medical countermeasures (MCMs) against highly pathogenic viruses that can prevent morbidity and mortality from infections caused by these agents. To date, antiviral drug development has been largely focused on clinically prevalent chronic infections due to their commercial viability. This has left a huge gap in the drug development path for acute infections of biodefense importance. In this review, we discuss the antiviral research and development initiatives focusing specifically on poxviruses, filoviruses, and equine encephalitis viruses (EEV). We discuss the benefits and technical challenges in the current development strategies and the hurdles in the licensure path for MCMs against these highly pathogenic viruses under the FDA Animal Rule, and we provide recommendations for the path forward.  相似文献   
997.
998.
999.

Background

Cerebral malaria (CM) is the most severe outcome of Plasmodium falciparum infection and a major cause of death in children from 2 to 4 years of age. A hospital based study in Ghana showed that P. falciparum induces eosinophilia and found a significantly higher serum level of eosinophil cationic protein (ECP) in CM patients than in uncomplicated malaria (UM) and severe malaria anemia (SA) patients. Single nucleotide polymorphisms (SNPs) have been described in the ECP encoding-gene (RNASE3) of which the c.371G>C polymorphism (rs2073342) results in an arginine to threonine amino acid substitution p.R124T in the polypeptide and abolishes the cytotoxicity of ECP. The present study aimed to investigate the potential association between polymorphisms in RNASE3 and CM.

Methodology/Principal Findings

The RNASE3 gene and flanking regions were sequenced in 206 Ghanaian children enrolled in a hospital based malaria study. An association study was carried out to assess the significance of five SNPs in CM (n = 45) and SA (n = 56) cases, respectively. The two severe case groups (CM and SA) were compared with the non-severe control group comprising children suffering from UM (n = 105). The 371G allele was significantly associated with CM (p = 0.00945, OR = 2.29, 95% CI = 1.22–4.32) but not with SA. Linkage disequilibrium analysis demonstrated significant linkage between three SNPs and the haplotype combination 371G/*16G/*94A was strongly associated with susceptibility to CM (p  = 0.000913, OR = 4.14, 95% CI = 1.79–9.56), thus, defining a risk haplotype. The RNASE3 371GG genotype was found to be under frequency-dependent selection.

Conclusions/Significance

The 371G allele of RNASE3 is associated with susceptibility to CM and forms part of a risk associated haplotype GGA defined by the markers: rs2073342 (G-allele), rs2233860 (G-allele) and rs8019343 (A-allele) respectively. Collectively, these results suggest a hitherto unrecognized role for eosinophils in CM pathogenesis.  相似文献   
1000.

Background

Acquisition of a blood supply is fundamental for extensive tumor growth. We recently described vascular heterogeneity in tumours derived from cell clones of a human mesenchymal stem cell (hMSC) strain (hMSC-TERT20) immortalized by retroviral vector mediated human telomerase (hTERT) gene expression. Histological analysis showed that cells of the most vascularized tumorigenic clone, -BD11 had a pericyte-like alpha smooth muscle actin (ASMA+) and CD146+ positive phenotype. Upon serum withdrawal in culture, -BD11 cells formed cord-like structures mimicking capillary morphogenesis. In contrast, cells of the poorly tumorigenic clone, -BC8 did not stain for ASMA, tumours were less vascularized and serum withdrawal in culture led to cell death. By exploring the heterogeneity in hMSC-TERT20 clones we aimed to understand molecular mechanisms by which mesenchymal stem cells may promote neovascularization.

Methodology/Principal Findings

Quantitative qRT-PCR analysis revealed similar mRNA levels for genes encoding the angiogenic cytokines VEGF and Angiopoietin-1 in both clones. However, clone-BD11 produced a denser extracellular matrix that supported stable ex vivo capillary morphogenesis of human endothelial cells and promoted in vivo neovascularization. Proteomic characterization of the -BD11 decellularized matrix identified 50 extracellular angiogenic proteins, including galectin-1. siRNA knock down of galectin-1 expression abrogated the ex vivo interaction between decellularized -BD11 matrix and endothelial cells. More stable shRNA knock down of galectin-1 expression did not prevent -BD11 tumorigenesis, but greatly reduced endothelial migration into -BD11 cell xenografts.

Conclusions

Decellularized hMSC matrix had significant angiogenic potential with at least 50 angiogenic cell surface and extracellular proteins, implicated in attracting endothelial cells, their adhesion and activation to form tubular structures. hMSC -BD11 surface galectin-1 expression was required to bring about matrix-endothelial interactions and for xenografted hMSC -BD11 cells to optimally recruit host vasculature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号