首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   274篇
  免费   5篇
  279篇
  2019年   1篇
  2015年   6篇
  2014年   12篇
  2013年   6篇
  2012年   10篇
  2011年   21篇
  2010年   4篇
  2008年   25篇
  2007年   27篇
  2006年   25篇
  2005年   29篇
  2004年   24篇
  2003年   26篇
  2002年   23篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1994年   2篇
  1992年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   3篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1971年   4篇
  1970年   3篇
  1969年   3篇
排序方式: 共有279条查询结果,搜索用时 15 毫秒
91.
Divergent regulation of the sarcomere and the cytoskeleton   总被引:1,自引:0,他引:1  
The existence of a feedback mechanism regulating the precise amounts of muscle structural proteins, such as actin and the actin-associated protein tropomyosin (Tm), in the sarcomeres of striated muscles is well established. However, the regulation of nonmuscle or cytoskeletal actin and Tms in nonmuscle cell structures has not been elucidated. Unlike the thin filaments of striated muscles, the actin cytoskeleton in nonmuscle cells is intrinsically dynamic. Given the differing requirements for the structural integrity of the actin thin filaments of the sarcomere compared with the requirement for dynamicity of the actin cytoskeleton in nonmuscle cells, we postulated that different regulatory mechanisms govern the expression of sarcomeric versus cytoskeletal Tms, as key regulators of the properties of the actin cytoskeleton. Comprehensive analyses of tissues from transgenic and knock-out mouse lines that overexpress the cytoskeletal Tms, Tm3 and Tm5NM1, and a comparison with sarcomeric Tms provide evidence for this. Moreover, we show that overexpression of a cytoskeletal Tm drives the amount of filamentous actin.  相似文献   
92.
93.
A YAC library enriched for telomere clones was constructed and screened for the human telomere-specific repeat sequence (TTAGGG). Altogether 196 TYAC library clones were studied: 189 new TYAC clones were isolated, 149 STSs were developed for 132 different TYACs, and 39 P1 clones were identified using 19 STSs from 16 of the TYACs. A combination of mapping methods including fluorescencein situhybridization, somatic cell hybrid panels, clamped homogeneous electric fields, meiotic linkage, and BLASTN sequence analysis was utilized to characterize the resource. Forty-five of the TYACs map to 31 specific telomere regions. Twenty-four linkage markers were developed and mapped within 14 proterminal regions (12 telomeres and 2 terminal bands). The polymorphic markers include 12 microsatellites for 10 telomeres (1q, 2p, 6q, 7q, 10p, 10q, 13q, 14q, 18p, 22q) and the terminal bands of 11q and 12p. Twelve RFLP markers were identified and meiotically mapped to the telomeres of 2q, 7q, 8p, and 14q. Chromosome-specific STSs for 27 telomeres were identified from the 196 TYACs. More than 30,000 nucleotides derived from the TYAC vector-insert junction regions or from regions flanking TYAC microsatellites were compared to reported sequences using BLASTN. In addition to identifying homology with previously reported telomere sequences and human repeat elements, gene sequences and a number of ESTs were found to be highly homologous to the TYAC sequences. These genes include human coagulation factor V (F5), Wee1 protein tyrosine kinase (WEE1), neurotropic protein tyrosine kinase type 2 (NTRK2), glutathioneS-transferase (GST1), and β tubulin (TUBB). The TYAC/P1 resource, derivative STSs, and polymorphisms constitute an enabling resource to further studies of telomere structure and function and a means for physical and genetic map integration and closure.  相似文献   
94.
TCTP protects from apoptotic cell death by antagonizing bax function   总被引:2,自引:0,他引:2  
Translationally controlled tumor protein (TCTP) is a potential target for cancer therapy. It functions as a growth regulating protein implicated in the TSC1-TSC2 -mTOR pathway or a guanine nucleotide dissociation inhibitor for the elongation factors EF1A and EF1Bbeta. Accumulating evidence indicates that TCTP also functions as an antiapoptotic protein, through a hitherto unknown mechanism. In keeping with this, we show here that loss of tctp expression in mice leads to increased spontaneous apoptosis during embryogenesis and causes lethality between E6.5 and E9.5. To gain further mechanistic insights into this apoptotic function, we solved and refined the crystal structure of human TCTP at 2.0 A resolution. We found a structural similarity between the H2-H3 helices of TCTP and the H5-H6 helices of Bax, which have been previously implicated in regulating the mitochondrial membrane permeability during apoptosis. By site-directed mutagenesis we establish the relevance of the H2-H3 helices in TCTP's antiapoptotic function. Finally, we show that TCTP antagonizes apoptosis by inserting into the mitochondrial membrane and inhibiting Bax dimerization. Together, these data therefore further confirm the antiapoptotic role of TCTP in vivo and provide new mechanistic insights into this key function of TCTP.  相似文献   
95.
Vascular smooth muscle cell (VSMC) foam cell formation is an important hallmark, especially in advanced atherosclerosis lesions. Acyl-coenzyme A:cholesterol acyltransferase 1 (ACAT1) promotes foam cell formation by promoting intracellular cholesteryl ester synthesis. The present study tests the hypothesis that oxidized low-density lipoprotein (oxLDL) increases the ACAT1 expression by activating the Toll-like receptor 4 (TLR4)-mediated inflammation, and ultimately promotes VSMC foam cell formation. Wild-type, ApoE−/−, TLR4−/− and ACAT1−/− mice on a C57BL/6J background were used. Increased TLR4, proinflammatory cytokines and ACAT1 were observed in high-fat (HF) diet-induced atherosclerotic plaque formation and in oxLDL-stimulated VSMCs. ACAT1 deficiency impeded the HF diet-induced atherosclerotic plaque formation and impaired the TLR4-manipulated VSMC foam cell formation in response to oxLDL. TLR4 deficiency inhibited the upregulation of myeloid-differentiating factor 88 (MyD88), nuclear factor-κB (NF-κB), proinflammatory cytokines and ACAT1, and eventually attenuated the HF diet-induced atherosclerotic plaque formation and suppressed the oxLDL-induced VSMC foam cell formation. Knockdown of MyD88 and NF-κB, respectively, impaired the TLR4-manipulated VSMC foam cell formation in response to oxLDL. Rosiglitazone (RSG) attenuated HF diet-induced atherosclerotic plaque formation in ApoE−/− mice, accompanied by reduced expression of TLR4, proinflammatory cytokines and ACAT1 accordingly. Activation of peroxisome proliferator-activated receptor γ (PPARγ) suppressed oxLDL-induced VSMC foam cell formation and inhibited the expression of TLR4, MyD88, NF-κB, proinflammatory cytokines and ACAT1, whereas inhibition of PPARγ exerted the opposite effect. TLR4−/− mice and VSMCs showed impaired atherosclerotic plaque formation and foam cell formation, and displayed no response to PPARγ manipulation. In conclusion, our data showed that oxLDL stimulation can activate the TLR4/MyD88/NF-κB inflammatory signaling pathway in VSMCs, which in turn upregulates the ACAT1 expression and finally promotes VSMC foam cell formation.Atherosclerosis remains the major cause of deaths worldwide, with deteriorated clinical consequence of cardiovascular diseases including myocardial infarction and stroke.1 In 2008, for example, 17.3 million deaths were caused by cardiovascular diseases, and this number will increase to 23.3 million by 2030.2 Therefore, a better understanding of mechanisms involved in atherosclerosis may advance the development of comprehensive therapeutic regimens.Foam cell formation from macrophages or vascular smooth muscle cells (VSMCs) is a crucial event in the development of atherosclerosis. Acyl-coenzyme A:cholesterol acyltransferase 1 (ACAT1) is an intracellular enzyme that converts free cholesterol into cholesteryl esters for storage in lipid droplets, and promotes foam cell formation in atherosclerotic lesions.3, 4, 5 ACAT1 activity is present in a variety of cells and tissues, including the macrophages, neurons, cardiomyocytes, VSMCs, mesothelial cells, alveolar and intestinal epithelial cells and hepatocytes.6 In macrophages, the involvement of ACAT1 in foam cell formation has been demonstrated by studies, and multiple molecular mechanisms have been put forward. A well-accepted mechanism is that inflammation increases the expression of ACAT1, promotes the intracellular lipid accumulation and ultimately leads to foam cell formation.7 However, in contrast, the mechanisms underlying VSMC foam cell formation, especially the role of ACAT1 in this process, remain largely unelucidated.It is widely accepted that atherosclerosis involves chronic inflammatory reaction.8 Toll-like receptor 4 (TLR4), one intensively investigated member of the TLR family, has a critical role in initiating inflammation, and participates in VSMC activation.9, 10 Lipopolysaccharide (LPS) is a TLR4-specific ligand that can trigger TLR4-mediated inflammation. A previous study showed that Chlamydia pneumoniae, which contains LPS in its outer membrane, promotes low-density lipoprotein-induced macrophage-derived foam cell formation via upregulation of the expression of ACAT1.11 This further enhanced the association between inflammation and intracellular lipid disorder. However, considering that VSMCs in normal conditions do not have inflammatory properties similar to macrophages, it is unclear whether the TLR4-mediated inflammatory mechanism is also involved in the regulation of ACAT1 in VSMC foam cell formation. Herein, the present study tests the hypothesis that oxidized low-density lipoprotein (oxLDL) increases the ACAT1 expression by activating the TLR4-mediated inflammation, and ultimately promotes VSMC foam cell formation.  相似文献   
96.
Epidermal growth factor receptor (EGFR), which promotes cell survival and division, is found at abnormally high levels on the surface of many cancer cell types, including many cases of non-small cell lung cancer. Erlotinib (Tarceva), an oral small-molecule tyrosine kinase inhibitor, is a so-called targeted drug that inhibits the tyrosine kinase domain of EGFR, and thus targets cancer cells with some specificity while doing less damage to normal cells. However, erlotinib resistance can occur, reducing the efficacy of this treatment. To develop more effective therapeutic interventions by overcoming this resistance problem, we combined the histone deacetylase inhibitor, MPT0E028, with erlotinib in an effort to increase their antitumor effects in erlotinib-resistant lung adenocarcinoma cells. This combined treatment yielded significant growth inhibition, induced the expression of apoptotic proteins (PARP, γH2AX, and caspase-3), increased the levels of acetylated histone H3, and showed synergistic effects in vitro and in vivo. These effects were independent of the mutation status of the genes encoding EGFR or K-Ras. MPT0E028 synergistically blocked key regulators of the EGFR/HER2 signaling pathways, attenuating multiple compensatory pathways (e.g., AKT, extracellular signal-regulated kinase, and c-MET). Our results indicate that this combination therapy might be a promising strategy for facilitating the effects of erlotinib monotherapy by activating various networks. Taken together, our data provide compelling evidence that MPT0E028 has the potential to improve the treatment of heterogeneous and drug-resistant tumors that cannot be controlled with single-target agents.  相似文献   
97.
Our work was aimed at developing a simple and effective method of identification of most or all chromosomes of Pleurodeles newts. To this end, we used DAPI staining of the chromomeres of newt lampbrush chromosomes and immunochemical reactions between the ribonucleoprotein (RNP) marker loops and polyclonal antibodies against human zinc-finger protein Ro52 (52-kDa Ro/SS-A). A method has been developed to obtain newt lampbrush chromosome preparations. Cytological maps of P. waltl chromosomes (Spanish population/subspecies) showing distributions of chromomeres and marker loops along the chromosome length were constructed.  相似文献   
98.
Distichodus antonii is an endemic fish species of the Congo River basin in which the stocks of wild populations are threatened by overfishing pressure. Knowledge of its reproductive biology would be useful in consideration of conservation and management options for the species. Therefore, this study investigated changes in ovarian activity and levels of steroid profiles in wild populations in relation to variation in temperature and rainfall. Adult females (n = 101, body weight of 3 183 ± 14.75 g, SE) were captured monthly over one year (2013–2014). Apart from evaluation of oocyte diameters and gonad developmental stages, gonado-, hepato-, lipososomatic indices (GSI, HSI, LSI) and plasma levels of sex steroids (testosterone-T, estradiol-17β-E2) were determined. The results suggested a synchronous development of oocytes with two annual reproductive seasons over the one-year study. Plasma T and E2 levels peaked during spawning periods likely reflecting active oogenesis. The highest values of morphosomatic indices were observed during the longest rainfall period in September, and were associated with high steroidogenic activity evidenced by increased E2 production. In addition, more vitellogenic oocytes (September and October) were observed during the latter season than during the short rainy season (in May).  相似文献   
99.
100.
The fate and phenotype of lesion macrophages is regulated by cellular oxidative stress. Thioredoxin-1 (Trx-1) plays a major role in the regulation of cellular redox balance, with resultant effects on gene expression and cellular responses including cell growth and death. Trx-1 activity is inhibited by interaction with vitamin D-upregulated protein-1 (VDUP-1). Peroxisome proliferator-activated receptor gamma (PPARgamma) is expressed by human monocyte-derived macrophages (HMDM) and PPARgamma agonism has been reported to decrease expression of inflammatory genes and to promote apoptosis of these cells. To determine whether VDUP-1 may be involved in regulating the effects of PPARgamma agonists in macrophages, we investigated the effect of a synthetic PPARgamma agonist (GW929) on the expression of VDUP-1 in HMDM. GW929 concentration-dependently increased HMDM expression of VDUP-1 (mRNA and protein). Transfection of different fragments of the VDUP-1 promoter as well as gel shift analysis revealed the presence of functional PPARgamma response elements (PPRE) in the promoter. Under conditions in which PPAR agonism altered levels of VDUP-1, caspase-3 activity, and macrophage apoptosis were also elevated. The results suggest that PPARgamma activation stimulates apoptosis in human macrophages by altering the cellular redox balance via regulation of VDUP-1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号