首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1053964篇
  免费   112781篇
  国内免费   556篇
  1167301篇
  2016年   11972篇
  2015年   17177篇
  2014年   19858篇
  2013年   28255篇
  2012年   31958篇
  2011年   32169篇
  2010年   21760篇
  2009年   20476篇
  2008年   29270篇
  2007年   30063篇
  2006年   28364篇
  2005年   27157篇
  2004年   26919篇
  2003年   25960篇
  2002年   25290篇
  2001年   44505篇
  2000年   44982篇
  1999年   36229篇
  1998年   13991篇
  1997年   14641篇
  1996年   14013篇
  1995年   13176篇
  1994年   13124篇
  1993年   12888篇
  1992年   30829篇
  1991年   29972篇
  1990年   29464篇
  1989年   28905篇
  1988年   26538篇
  1987年   25933篇
  1986年   23923篇
  1985年   24143篇
  1984年   20110篇
  1983年   17507篇
  1982年   13817篇
  1981年   12366篇
  1980年   11831篇
  1979年   19487篇
  1978年   15485篇
  1977年   13926篇
  1976年   13316篇
  1975年   14494篇
  1974年   15471篇
  1973年   15304篇
  1972年   13713篇
  1971年   12639篇
  1970年   10906篇
  1969年   10325篇
  1968年   9342篇
  1967年   8428篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
32.
Structural maintenance of chromosomes (SMC) proteins play fundamental roles in higher-order chromosome dynamics from bacteria to humans. It has been proposed that the Bacillus subtilis SMC (BsSMC) homodimer is composed of two anti-parallel coiled-coil arms, each having an ATP-binding domain at its distal end. It remains totally unknown, however, how the two-armed structure supports ATP-dependent actions of BsSMC. By constructing a number of mutant derivatives including 'single-armed' BsSMC, we show here that the central hinge domain provides a structural flexibility that allows opening and closing of the two arms. This unique structure brings about bimodal regulation of the SMC ATPase cycle. Closing the arm can trigger ATP hydrolysis by allowing an end-end interaction within a dimer (intramolecular mode). When bound to DNA, ATP promotes a dimer-dimer interaction, which in turn activates their DNA-dependent ATPase activity (intermolecular mode). Our results reveal a novel mechanism of ATPase regulation and provide mechanistic insights into how eukaryotic SMC protein complexes could mediate diverse chromosomal functions, such as chromosome condensation and sister chromatid cohesion.  相似文献   
33.
Contrary to highly selected commercial breeds, indigenous domestic breeds are composed of semi-wild or feral populations subjected to reduced levels of artificial selection. As a consequence, many of these breeds have become locally adapted to a wide range of environments, showing high levels of phenotypic variability and increased fitness under natural conditions. Genetic analyses of three loci associated with milk production (alpha(S1)-casein, kappa-casein and prolactin) and the locus BoLA-DRB3 of the major histocompatibility complex indicated that the Argentinean Creole cattle (ACC), an indigenous breed from South America, maintains high levels of genetic diversity and population structure. In contrast to the commercial Holstein breed, the ACC showed considerable variation in heterozygosity (H(e)) and allelic diversity (A) across populations. As expected, bi-allelic markers showed extensive variation in He whereas the highly polymorphic BoLA-DRB3 showed substantial variation in A, with individual populations having 39-74% of the total number of alleles characterized for the breed. An analysis of molecular variance (AMOVA) of nine populations throughout the distribution range of the ACC revealed that 91.9-94.7% of the total observed variance was explained by differences within populations whereas 5.3-8.1% was the result of differences among populations. In addition, the ACC breed consistently showed higher levels of genetic differentiation among populations than Holstein. Results from this study emphasize the importance of population genetic structure within domestic breeds as an essential component of genetic diversity and suggest that indigenous breeds may be considered important reservoirs of genetic diversity for commercial domestic species.  相似文献   
34.
35.
36.
37.
Meiosis is the process by which diploid germ cells divide to produce haploid gametes for sexual reproduction. The process is highly conserved in eukaryotes, however the recent availability of mouse models for meiotic recombination has revealed surprising regulatory differences between simple unicellular organisms and those with increasingly complex genomes. Moreover, in these higher eukaryotes, the intervention of physiological and sex-specific factors may also influence how meiotic recombination and progression are monitored and regulated. This review will focus on the recent studies involving mouse mutants for meiosis, and will highlight important differences between traditional model systems for meiosis (such as yeast) and those involving more complex cellular, physiological and genetic criteria.  相似文献   
38.
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号