首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   782306篇
  免费   95046篇
  国内免费   433篇
  877785篇
  2016年   8540篇
  2015年   13021篇
  2014年   14985篇
  2013年   20834篇
  2012年   23832篇
  2011年   23764篇
  2010年   16097篇
  2009年   15285篇
  2008年   21772篇
  2007年   22387篇
  2006年   20929篇
  2005年   20189篇
  2004年   19992篇
  2003年   19356篇
  2002年   18775篇
  2001年   34301篇
  2000年   34742篇
  1999年   28005篇
  1998年   10731篇
  1997年   11374篇
  1996年   10921篇
  1995年   10330篇
  1994年   10179篇
  1993年   10003篇
  1992年   23588篇
  1991年   22846篇
  1990年   22478篇
  1989年   21811篇
  1988年   20078篇
  1987年   19743篇
  1986年   18112篇
  1985年   18192篇
  1984年   15121篇
  1983年   13208篇
  1982年   10555篇
  1981年   9407篇
  1980年   8951篇
  1979年   14552篇
  1978年   11693篇
  1977年   10566篇
  1976年   9964篇
  1975年   10801篇
  1974年   11632篇
  1973年   11420篇
  1972年   10222篇
  1971年   9480篇
  1970年   8111篇
  1969年   7664篇
  1968年   6844篇
  1967年   6176篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
881.
Growth of Bordetella pertussis in Stainer & Scholte medium in which the NaCl had been replaced by one of several inorganic or organic salts resulted in a large decrease in adenylate cyclase activity, histamine-sensitizing activity and in the amounts of two cell-envelope polypeptides of Mr 28000 and 30000. Although some variation between strains was observed, there was never a case where one of these properties was lost independently of the others. Cultures in which these properties were lost had decreased amounts of extracellular cAMP when compared to NaCl-grown cultures. Adenylate cyclase activity was detected in three locations of B. pertussis cultures (extracellular, extracytoplasmic but cell-associated, and cytoplasmic). After growth in medium containing high concentrations of MgSO4, enzyme activity was decreased to a similar extent in all three locations.  相似文献   
882.
The turnover of phospholipids was investigated in quiescent serum-starved Chinese-hamster ovary (CHO-K1) cells stimulated to progress through the cell cycle by the addition of dialysed bovine serum. A variety of radiolabelling techniques were employed to study the rapid effects of serum on phospholipids and later events during G1 and S phases of the cell cycle. Pulse-labelling studies using [32P]Pi revealed that there was a stimulation of the synthesis rate of all phospholipids investigated during the initial few hours after serum addition. The greatest stimulation (20-fold) was observed in phosphatidylcholine, and the smallest in the polyphosphoinositides (PPIs). Mock stimulation with serum-free medium caused a similar increase in PPI turnover, but little or no effect on turnover of other phospholipids. This effect could be accounted for by a stimulation of the turnover of cellular ATP pools increasing [32P]ATP specific radioactivity. Late G1 and S phases were associated with a decrease in the rate of synthesis of all phospholipids. Phosphatidic acid was the only phospholipid whose labelling fell below that in mock-stimulated cells during the period of the cell cycle. Stimulation of serum-starved cells that had been prelabelled with myo-[2-3H]inositol caused no change in the amounts of inositol trisphosphate, but both serum-stimulated and mock-stimulated cells exhibited similar small decreases in both inositol bisphosphate and inositol monophosphate, of approx. 30% after 30 s. When cells were serum-stimulated in the presence of 10 mM-Li+, there was no increase in the size of the total inositol phosphate pool. We conclude that mitogenic stimulation and cell-cycle traverse cause profound and complex effects on phospholipid turnover in CHO-K1 cells, but there is no evidence for a role of inositol lipid turnover in the proliferative response to serum in this cell line.  相似文献   
883.
884.
Chromosomal RNA: an artifact of preparation?   总被引:2,自引:0,他引:2  
  相似文献   
885.
886.
Hepatic alcohol dehydrogenase activity and mass content change coordinately during development in male rats. Enzyme activity and mass content increase continuously after birth to 100 and 80% of maximal values within 6 weeks (2.6 ± 0.4 μmole/min/g liver and 92 ± 20 μg/g liver), respectively. When expressed per milligram of soluble proteins, both parameters peak at 3 weeks (0.052 ± 0.002 μmole/min/mg protein and 2.0 ± 0.4 μg/mg protein) and then decrease gradually to plateau levels. These decreases probably arise from a “surge” in soluble liver protein levels that occurs after weaning. Similar developmental patterns also occur in female rats. These findings are the first quantitative measurements of this enzyme in developing animals.  相似文献   
887.
888.
889.
Type III glycogen storage disease is caused by a deficiency of glycogen debranching-enzyme activity. Many patients with this disease have both liver and muscle involvement, whereas others have only liver involvement without clinical or laboratory evidence of myopathy. To improve our understanding of the molecular basis of the disease, debranching enzyme was purified 238-fold from porcine skeletal muscle. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis the purified enzyme gave a single band with a relative molecular weight of 160,000 that migrated to the same position as purified rabbit-muscle debranching enzyme. Antiserum against porcine debranching enzyme was prepared in rabbit. The antiserum reacted against porcine debranching enzyme with a single precipitin line and demonstrated a reaction having complete identity to those of both the enzyme present in crude muscle and the enzyme present in liver extracts. Incubation of antiserum with purified porcine debranching enzyme inhibited almost all enzyme activity, whereas such treatment with preimmune serum had little effect. The antiserum also inhibited debranching-enzyme activity in crude liver extracts from both pigs and humans to the same extent as was observed in muscle. Immunoblot analysis probed with anti-porcine-muscle debranching-enzyme antiserum showed that the antiserum can detect debranching enzyme in both human muscle and human liver. The bands detected in human samples by the antiserum were the same size as the one detected in porcine muscle. Five patients with Type III and six patients with other types of glycogen storage disease were subjected to immunoblot analysis. Although anti-porcine antiserum detected specific bands in all liver and muscle samples from patients with other types of glycogen storage disease (Types I, II, and IX), the antiserum detected no cross-reactive material in any of the liver or muscle samples from patients with Type III glycogen storage disease. These data indicate (1) immunochemical similarity of debranching enzyme in liver and muscle and (2) that deficiency of debranching-enzyme activity in Type III glycogen storage disease is due to absence of debrancher protein in the patients that we studied.  相似文献   
890.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号