首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1053360篇
  免费   126210篇
  国内免费   598篇
  1180168篇
  2016年   11849篇
  2015年   17554篇
  2014年   20235篇
  2013年   28690篇
  2012年   32278篇
  2011年   32487篇
  2010年   22090篇
  2009年   20818篇
  2008年   29523篇
  2007年   30300篇
  2006年   28401篇
  2005年   27293篇
  2004年   26893篇
  2003年   26136篇
  2002年   25352篇
  2001年   44829篇
  2000年   45350篇
  1999年   36355篇
  1998年   14124篇
  1997年   14916篇
  1996年   14229篇
  1995年   13470篇
  1994年   13209篇
  1993年   13200篇
  1992年   31043篇
  1991年   30271篇
  1990年   29594篇
  1989年   28904篇
  1988年   26687篇
  1987年   26077篇
  1986年   24270篇
  1985年   24388篇
  1984年   20276篇
  1983年   17756篇
  1982年   14044篇
  1981年   12672篇
  1980年   12135篇
  1979年   19717篇
  1978年   15824篇
  1977年   14418篇
  1976年   13646篇
  1975年   14887篇
  1974年   15868篇
  1973年   15567篇
  1972年   14063篇
  1971年   12992篇
  1970年   11144篇
  1969年   10642篇
  1968年   9513篇
  1967年   8542篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
881.
882.
883.
Methods for study of mutations and mutagenesis in human lymphocytes   总被引:4,自引:0,他引:4  
Detailed methods are presented for measurement and study of in vivo mutations and in vitro mutagenesis in human lymphocytes. The methods described include preparation of conditioned medium containing interleukin-2, enumeration of mutant clones, in vitro mutagenesis, and expansion of mutant clones for further study.  相似文献   
884.
Cytosolic protein phosphotyrosine (PPT) phosphatase was measured using a new substrate, Tyr(32P)-labeled bovine serum albumin. Kidney was found as a particularly rich tissue source of PPT-phosphatase activity, containing twice as much as liver and over 10-fold more than brain, heart, lung, or skeletal muscle. An affinity column of Zn2+-iminodiacetate agarose adsorbed up to 60% of the PPT-phosphatase present in kidney extracts. Subsequent chromatography on DEAE-Sepharose separated the phosphatase into two peaks, labeled I and II, that had Mr = 34,000 and 37,000, respectively, upon gel filtration with Sephadex G-75 Superfine. Overall purification of 850- and 1100-fold was achieved with a net 4% yield. Both phosphatases hydrolyzed p-nitrophenylphosphate as well as the protein substrate in the presence of EDTA. Peak I phosphatase activity displayed a neutral pH optimum, had an absolute requirement for sulfhydryl compounds, and was sensitive to trypsin, whereas Peak II activity had an acidic pH optimum and was active without mercaptans. The two proteins also gave different fragmentation patterns by gel electrophoresis after digestion with S. aureus V8 protease. The results show that multiple forms of PPT phosphatase specifically interact with Zn2+ and provide a basis for further structural and functional comparisons among different members of the phosphoprotein phosphatase family.  相似文献   
885.
D Applegate  A Azarcon  E Reisler 《Biochemistry》1984,23(26):6626-6630
The method of limited tryptic proteolysis has been used to compare and contrast the substructure of bovine cardiac myosin subfragment 1 (S-1) to that of skeletal myosin S-1. While tryptic cleavage of cardiac S-1, like that of skeletal S-1, yields three fragments, the 25K, 50K, and 20K peptides, the digestion of cardiac S-1 proceeds at a 2-fold faster rate. The increased rate of cleavage is due entirely to an order of magnitude faster rate of cleavage at the 25K/50K junction of cardiac S-1 compared to that of skeletal, with approximately equal rates of cleavage at the 50K/20K junctions. Actin inhibits the tryptic attack at this latter junction, but its effect is an order of magnitude smaller for the cardiac than for the skeletal S-1. Furthermore, the tryptic susceptibility of the 50K/20K junction of cardiac S-1 in the acto-S-1 complex is increased in the presence of 2 mM MgADP. This effect is not due to partial dissociation of the cardiac acto-S-1 complex by MgADP. Our results indicate that in analogy to skeletal S-1, the cardiac myosin head is organized into three protease-resistant fragments connected by open linker peptides. However, the much faster rate of tryptic cleavage of the 25K/50K junction and also the greater accessibility of the 50K/20K junction in the cardiac acto-S-1 complex indicate substructural differences between cardiac and skeletal S-1.  相似文献   
886.
The functional domains of the regulatory subunit of isozyme II of cAMP-dependent protein kinase were studied. It was shown using Edman degradation that the regulatory subunit contained a phosphorylated residue which was very close in primary sequence to the site most sensitive to hydrolysis by low trypsin concentrations as postulated previously (Corbin, J.D., Sugden, P.H., West, L., Flockhart, D.A., Lincoln, T.M., and McCarthy, D. (1978) J. Biol. Chem. 253, 3997-4003). Catalytic subunit incorporated 0.9 mol of 32P from [gamma-32P]ATP into a preparation of regulatory subunit that contained 1.1 mol of endogenous phosphate. After phosphorylation by the catalytic subunit, the regulatory subunit contained 2.2 mol of chemical phosphate. The effects of heat denaturation upon the rate and extent of phosphorylation of the regulatory subunit were compared with the effects of these treatments upon the cAMP binding and inhibitory domains. These data suggested that the regulatory subunit required factors in addition to an intact phosphorylatable primary sequence in order for inhibitory activity to be expressed. Such factors might be part of the secondary or tertiary structure of the protein. These studies are discussed with respect to the mechanism of inhibition of catalytic activity, and a model of the regulatory subunit structure is proposed.  相似文献   
887.
888.
An oligomycin-sensitive F1F0-ATPase isolated from bovine heart mitochondria has been reconstituted into phospholipid vesicles and pumps protons. this preparation of F1F0-ATPase contains 14 different polypeptides that are resolved by polyacrylamide gel electrophoresis under denaturing conditions, and so it is more complex than bacterial and chloroplast enzymes, which have eight or nine different subunits. The 14 bovine subunits have been characterized by protein sequence analysis. They have been fractionated on polyacrylamide gels and transferred to poly(vinylidene difluoride) membranes, and N-terminal sequences have been determined in nine of them. By comparison with known sequences, eight of these have been identified as subunits beta, gamma, delta, and epsilon, which together with the alpha subunit form the F1 domain, as the b and c (or DCCD-reactive) subunits, both components of the membrane sector of the enzyme, and as the oligomycin sensitivity conferral protein (OSCP) and factor 6 (F6), both of which are required for attachment of F1 to the membrane sector. The sequence of the ninth, named subunit e, has been determined and is not related to any reported protein sequence. The N-terminal sequence of a tenth subunit, the membrane component A6L, could be determined after a mild acid treatment to remove an alpha-N-formyl group. Similar experiments with another membrane component, the a or ATPase-6 subunit, caused the protein to degrade, but the protein has been isolated from the enzyme complex and its position on gels has been unambiguously assigned. No N-terminal sequence could be derived from three other proteins. The largest of these is the alpha subunit, which previously has been shown to have pyrrolidonecarboxylic acid at the N terminus of the majority of its chains. The other two have been isolated from the enzyme complex; one of them is the membrane-associated protein, subunit d, which has an alpha-N-acetyl group, and the second, surprisingly, is the ATPase inhibitor protein. When it is isolated directly from mitochondrial membranes, the inhibitor protein has a frayed N terminus, with chains starting at residues 1, 2, and 3, but when it is isolated from the purified enzyme complex, its chains are not frayed and the N terminus is modified. Previously, the sequences at the N terminals of the alpha, beta, and delta subunits isolated from F1-ATPase had been shown to be frayed also, but in the F1F0 complex they each have unique N-terminal sequences.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
889.
Studies with substrate analogues and the pH optimum indicated the involvement of carboxyl group in the active site of goat carboxypeptidase A. Chemical modification of the enzyme with 1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide methoI -p-toluene sulphonate, a carboxyl specific reagent, led to loss of both esterase and peptidase activities. Protection studies showed that this carboxyl group was in the active site and was protected by Βp-phenylpropionic acid and glycyl-L-tyrosine. Kinetic studies also confirmed the involvement of carboxylic group because the enzyme modification with water soluble carbodiimide was a two step reaction which excluded the possibility of tyrosine or lysine which are known to give a one step reaction with this reagent  相似文献   
890.
J W Orr  A C Newton 《Biochemistry》1992,31(19):4661-4667
The basis for the apparent cooperativity in the activation of protein kinase C by phosphatidylserine has been addressed using proteolytic sensitivity, resonance energy transfer, and enzymatic activity. We show that binding of protein kinase C to detergent-lipid mixed micelles and model membranes is cooperatively regulated by phosphatidylserine. The sigmoidal dependence on phosphatidylserine for binding is indistinguishable from that observed for the activation of the kinase by this lipid [Newton & Koshland (1989) J. Biol. Chem. 264, 14909-14915]. Thus, protein kinase C activity is linearly related to the amount of phosphatidylserine bound. Furthermore, under conditions where protein kinase C is bound to micelles at all lipid concentrations, activation of the enzyme continues to display a sigmoidal dependence on the phosphatidylserine content of the micelle. This indicates that the apparent cooperativity in binding does not arise because protein kinase C senses a higher concentration of phosphatidylserine once recruited to the micelle. Our results reveal that the affinity of protein kinase C for phosphatidylserine increases as more of this lipid binds, supporting the hypothesis that a domain of phosphatidylserine is cooperatively sequestered around the enzyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号