首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1557183篇
  免费   167699篇
  国内免费   1306篇
  1726188篇
  2018年   14340篇
  2016年   19669篇
  2015年   27200篇
  2014年   31961篇
  2013年   45408篇
  2012年   50995篇
  2011年   51955篇
  2010年   35454篇
  2009年   32766篇
  2008年   46695篇
  2007年   48146篇
  2006年   45192篇
  2005年   43275篇
  2004年   43145篇
  2003年   41155篇
  2002年   40196篇
  2001年   61355篇
  2000年   61190篇
  1999年   49498篇
  1998年   19937篇
  1997年   20173篇
  1996年   19041篇
  1995年   17983篇
  1994年   17538篇
  1993年   17511篇
  1992年   41904篇
  1991年   41144篇
  1990年   40448篇
  1989年   39511篇
  1988年   36663篇
  1987年   35375篇
  1986年   32988篇
  1985年   33298篇
  1984年   27771篇
  1983年   24446篇
  1982年   19063篇
  1981年   17333篇
  1980年   16262篇
  1979年   26748篇
  1978年   21594篇
  1977年   19683篇
  1976年   18611篇
  1975年   20716篇
  1974年   22490篇
  1973年   22125篇
  1972年   20076篇
  1971年   18338篇
  1970年   15959篇
  1969年   15491篇
  1968年   13883篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
1. In rat kidney cortex, outer and inner medulla the development of activities of seven enzymes was investigated during postnatal ontogeny (10, 20, 30, 60 and 90 days of age). The enzymes were selected in such a manner, as to characterize most of the main metabolic pathways of energy supplying metabolism: hexokinase (glucose phosphorylation, HK), glycerol-3-phosphate dehydrogenase (glycerolphosphate metabolism or shunt, GPDH), triose phosphate dehydrogenase (glycolytic carbohydrate breakdown, TPDH), lactate dehydrogenase (lactate metabolism, LDH), citrate synthase (tricarboxylic acid cycle, aerobic metabolism, CS), malate NAD dehydrogenase (tricarboxylic acid cycle, intra-extra mitochondrial hydrogen transport, MDH) and 3-hydroxyacyl-CoA-dehydrogenase (fatty acid catabolism, HOADH). 2. The renal cortex already differs metabolically from the medullar structures on the 10th day of life. It displays a high activity of aerobic breakdown of both fatty acids and carbohydrates. Its metabolic capacity further increases up to the 30th day of life. 3. The outer medullar structure is not grossly different from the inner medulla on the 10th day of life. Further it differentiates into a highly aerobic tissue mainly able to utilize carbohydrates. It can, however, to some extent, also utilize fatty acids aerobically and produce lactate from carbohydrates anaerobically. 4. The inner medullar structure is best equipped to utilize carbohydrates by anaerobic glycolysis, forming lactate. This feature is already pronounced on the 10th day of life, its capacity increases to some extent during postnatal development, being highest between the 10th and the 60th day of life.  相似文献   
992.
The changes in the size of the myocardial injury area during reperfusion after the coronary occlusion-induced ischemia lasting 30 minutes are phasic in nature. Until 3.5 h the injured area increases and after 23.5 h relatively diminishes. After a more prolonged ischemia such manifestations are either unmarked or absent. Ischemia lasting from 30 min to 4 hours followed by reperfusion, as compared with ischemia of the same duration without reperfusion, normally gives rise to the formation of an area of injury, which is less or occasionally equal in size. The data obtained and reported indicate that in the area of coronary occlusion there are groups of cardiomyocytes that differ as regards the resistance to ischemia.  相似文献   
993.
994.
Structure-activity relationships for the inhibition of thrombin and trypsin by N alpha-substituted amidinophenyl-alpha-aminoalkylcarboxylic acid amides are presented. Secondary cyclic amides of N alpha-substituted 4-amidinophenylalanine and 2-amino-5-(4-amidinophenyl)valeric acid were found to be potent and specific inhibitors of thrombin, whereas trypsin was inhibited strongly by primary amides of 2-amino-4-(4-amidinophenyl) butyric acid. For this type of inhibitor the carbon amide structure seems to play a decisive role in the enzyme-inhibitor interaction.  相似文献   
995.
Additive reagents have been investigated to improve the stability of methanolic Wright's stain. The addition of ammonium halides, monoalkyiamine hydrochlorides, dialkylamine hydrochlorides or trialkylamine hydrochlorides to methanolic Wright's stain was found to enhance the stability of stain components in methanol. No change in performance is observed with these additives present. Random precipitation in the stain solution was still observed with the addition of ammonium halides and monoalkyiamine hydrochlorides. No precipitation was found in stain solutions containing hydrochlorides of most dialkylamines and trialkylamines. Of the compounds evaluated, 0.6% diethylamine hydrochloride added to methanolic stain solutions produced the most desirable overall results. Mechanisms of stabilization and precipitation in these stain solutions are proposed, Essentially, separation of the thiazine-eosinate ion pair through interaction with an appropriate additive increases stain stability. The solubilities of thiazine-eosinate or additive cation-eosinate ion pairs in methanol determine the formation of precipitate in such stain solutions.  相似文献   
996.
997.
The ilvI and ilvH gene products were identified physically by electrophoretic analysis of in vivo-labelled polypeptides produced in minicells from plasmids carrying the wild-type ilvIH operon of Escherichia coli K-12 and derivatives of it. An analysis of the distribution of methionine residues in the amino-terminal portion of micro-quantities of the ilvI product eluted from gel showed that the translational start of the ilvI gene is the promoter-proximal one of three putative methionine codons predicted from the DNA sequence.  相似文献   
998.
999.
G M?rdh  D S Auld  B L Vallee 《Biochemistry》1987,26(24):7585-7588
Thyroid hormones are potent, instantaneous, and reversible inhibitors of ethanol oxidation catalyzed by isozymes of class I and II human alcohol dehydrogenase (ADH). None of the thyroid hormones inhibits class III ADH. At pH 7.40 the apparent Ki values vary between 55 and 110 microM for triiodothyronine, 35 and greater than 200 microM for thyroxine, and 10 and 23 microM for triiodothyroacetic acid. The inhibition is of a mixed type toward both NAD+ and ethanol. The binding of the thyroid hormone triiodothyronine to beta 1 gamma 1 ADH is mutually exclusive with 1,10-phenanthroline, 4-methylpyrazole, and testosterone, identifying a binding site(s) for the thyroid hormones, which overlap(s) both the 1,10-phenanthroline site near the active site zinc atom and the testosterone binding site, the latter being a regulatory site on the gamma-subunit-containing isozymes and distinct from their catalytic site. The inhibition by thyroid hormones may have implications for regulation of ADH catalysis of ethanol and alcohols in the intermediary metabolism of dopamine, norepinephrine, and serotonin and in steroid metabolism. In concert with other hormonal regulators, e.g., testosterone, the rate of ADH catalysis is capable of being fine tuned in accord with both substrate and modulator concentrations.  相似文献   
1000.
The mechanism of depletion of tricarboxylic acid cycle intermediates by isolated rat heart mitochondria was studied using hydroxymalonate (an inhibitor of malic enzymes) and mercaptopicolinate (an inhibitor of phosphoenolpyruvate carboxykinase) as tools. Hydroxymalonate inhibited the respiration rate of isolated mitochondria in state 3 by 40% when 2 mM malate was the only external substrate, but no inhibition was found with 2 mM malate plus 0.5 mM pyruvate as substrates. In the prescence od bicarbonate, arsenite and ATP, propionate was converted to pyruvate and malate at the rates of 14.0 ± 2.9 and 2.8 ± 1.8 nmol/mg protein in 5 min, respectively. Under these conditions, 0.1 mM mercaptopicolinate did not affect this conversion, but 2 mM hydroxymalonate inhibited pyruvate formation completely and resulted in an accumulation of malate up to 13.2 ± 2.9 nmol/mg protein. No accumulation of phosphoenolpyruvate was found under any condition tested. It is concluded that malic enzymes but not phosphoenolpyruvate carboxykinase, are involved in conversion of propionate to pyruvate in isolated rat heart mitochondria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号