首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1467篇
  免费   56篇
  国内免费   1篇
  2022年   12篇
  2021年   22篇
  2020年   8篇
  2019年   15篇
  2018年   14篇
  2017年   18篇
  2016年   29篇
  2015年   54篇
  2014年   67篇
  2013年   83篇
  2012年   82篇
  2011年   86篇
  2010年   54篇
  2009年   59篇
  2008年   93篇
  2007年   82篇
  2006年   107篇
  2005年   92篇
  2004年   97篇
  2003年   92篇
  2002年   91篇
  2001年   11篇
  2000年   16篇
  1999年   15篇
  1998年   14篇
  1997年   16篇
  1996年   15篇
  1995年   22篇
  1994年   9篇
  1993年   14篇
  1992年   6篇
  1991年   10篇
  1990年   4篇
  1989年   6篇
  1988年   9篇
  1986年   6篇
  1984年   5篇
  1983年   4篇
  1982年   12篇
  1981年   6篇
  1980年   4篇
  1977年   3篇
  1974年   3篇
  1973年   3篇
  1938年   5篇
  1935年   6篇
  1934年   5篇
  1931年   7篇
  1930年   4篇
  1927年   3篇
排序方式: 共有1524条查询结果,搜索用时 187 毫秒
141.
OVCA1 is a tumor suppressor identified by positional cloning from chromosome 17p13.3, a hot spot for chromosomal aberration in breast and ovarian cancers. It has been shown that expression of OVCA1 is reduced in some tumors and that it regulates cell proliferation, embryonic development, and tumorigenesis. However, the biochemical function of OVCA1 has remained unknown. Recently, we isolated a novel mutant resistant to diphtheria toxin and Pseudomonas exotoxin A from the gene trap insertional mutants library of Chinese hamster ovary cells. In this mutant, the Ovca1 gene was disrupted by gene trap mutagenesis, and this disruption well correlated with the toxin-resistant phenotype. We demonstrated direct evidence that the tumor suppressor OVCA1 is a component of the biosynthetic pathway of diphthamide on elongation factor 2, the target of bacterial ADP-ribosylating toxins. A functional genetic approach utilizing the random gene trap mutants library of mammalian cells should become a useful strategy to identify the genes responsible for specific phenotypes.  相似文献   
142.
Cryptochrome 1 and 2 act as essential components of the central and peripheral circadian clocks for generation of circadian rhythms in mammals. Here we show that mouse cryptochrome 2 (mCRY2) is phosphorylated at Ser-557 in the liver, a well characterized peripheral clock tissue. The Ser-557-phosphorylated form accumulates in the liver during the night in parallel with mCRY2 protein, and the phosphorylated form reaches its maximal level at late night, preceding the peak-time of the protein abundance by approximately 4 h in both light-dark cycle and constant dark conditions. The Ser-557-phosphorylated form of mCRY2 is localized in the nucleus, whereas mCRY2 protein is located in both the cytoplasm and nucleus. Importantly, phosphorylation of mCRY2 at Ser-557 allows subsequent phosphorylation at Ser-553 by glycogen synthase kinase-3beta (GSK-3beta), resulting in efficient degradation of mCRY2 by a proteasome pathway. As assessed by phosphorylation of GSK-3beta at Ser-9, which negatively regulates the kinase activity, GSK-3beta exhibits a circadian rhythm in its activity with a peak from late night to early morning when Ser-557 of mCRY2 is highly phosphorylated. Altogether, the present study demonstrates an important role of sequential phosphorylation at Ser-557/Ser-553 for destabilization of mCRY2 and illustrates a model that the circadian regulation of mCRY2 phosphorylation contributes to rhythmic degradation of mCRY2 protein.  相似文献   
143.
Nateglinide, a novel oral hypoglycemic agent, possesses a carbonyl group and a peptide-type bond in its structure. We previously reported that nateglinide transport occurs via a single system that may be identical to the ceftibuten/H(+) cotransport system by the rat small intestine. We speculated that the absorption system present on the intestinal epithelium may be similar to that found on the renal tubular epithelium. The aim of this study was to characterize the transporters on the apical side of the kidney that may contribute to the reabsorption of ceftibuten and nateglinide. The uptake of nateglinide by rat renal brush-border membranes is associated with an H(+)-coupled transport system. Ceftibuten competitively inhibited H(+)-dependent nateglinide uptake. In contrast, Gly-Sar, cephradine and cephalexin had no effect on nateglinide uptake. Nateglinide competitively inhibited H(+)-driven transporter-mediated ceftibuten uptake. We conclude that nateglinide transport occurs via a single system that is H(+)-dependent and may be identical to the ceftibuten/H(+) cotransport system.  相似文献   
144.
We performed a quantitative trait locus (QTL) analysis of eight body weights recorded weekly from 3 weeks to 10 weeks after birth and two weight gains recorded between 3 weeks and 6 weeks, and between 6 weeks and 10 weeks in an inter-sub-specific backcross population of wild Mus musculus castaneus mice captured in the Philippines and the common inbred strain C57BL/6J ( M. musculus domesticus ), to elucidate the complex genetic architecture of body weight and growth. Interval mapping identified 17 significant QTLs with main effects on 11 chromosomes. In particular, the main effect of the most potent QTL on proximal chromosome 2 increased linearly with age, whereas other QTLs exerted effects on either the early or late growth period. Surprisingly, although wild mice displayed 60% of the body size of their C57BL/6J counterparts, the wild-derived allele enhanced growth at two QTLs. Interestingly, five of the 17 main-effect QTLs identified had significant epistatic interaction effects. Five new epistatic QTLs with no main effects were identified on different chromosomes or regions. For one pair of epistatic QTLs, mice that were heterozygous for the wild-derived allele at one QTL and homozygous for that allele at another QTL exhibited the most rapid growth in all four possible genotypic combinations. Out of the identified QTLs, several showed significant sex-specific effects.  相似文献   
145.
Bis(pyridine) complexes of molybdenum and tungsten, [M(η3-allyl)Cl(CO)2(NC5H5)2] (M=Mo; 3-Mo, M=W; 3-W), reacted with an equimolar amount of lithiated amidinate, Li[(PhN)2CR] (R=H; 4a-Li, R = CH3; 4b-Li), to yield corresponding amidinato(pyridine) complexes, [M(η3-allyl){(PhN)2CR}(CO)2(NC5H5)] (M=Mo, R=H; 5a-Mo, M=Mo, R=CH3; 5b-Mo, M=W, R=H; 5a-W), as a yellow solid. The dissociation of pyridine ligand from the central metal in complexes 5a was observed in a polar solvent such as acetonitrile. In these cases, although the formation of amidinato(acetonitrile) complexes, [M(η3-allyl){(PhN)2CH}(CO)2(NCMe)] (M=Mo; 6a-Mo, M=W; 6a-W), was suggested spectroscopically, isolation of complexes 6a was not successful but the re-formation of pyridine complexes 5a was observed. In the reactions of complexes 5a with PEt3 and with P(OMe)3, the substitution reactions easily took place to give [M(η3-allyl){(PhN)2CH}(CO)2(PEt3)] (M=Mo; 7a-Mo, M=W; 7a-W) and [M(η3-allyl){(PhN)2CH}(CO)2{P(OMe)3}] (M=Mo; 8a-Mo, M=W; 8a-W), respectively. These complexes were characterized spectroscopically as well as, in some cases, by X-ray analyses.  相似文献   
146.
Singlet oxygen, generated during photosynthesis, is a strong oxidant that can, potentially, damage various molecules of biological importance. We investigated the effects in vivo of singlet oxygen on the photodamage to photosystem II (PSII) in the cyanobacterium Synechocystis sp. PCC 6803. Increases in intracellular concentrations of singlet oxygen, caused by the presence of photosensitizers, such as rose bengal and ethyl eosin, stimulated the apparent photodamage to PSII. However, actual photodamage to PSII, as assessed in the presence of chloramphenicol, was unaffected by the production of singlet oxygen. These observations suggest that singlet oxygen produced by added photosensitizers acts by inhibiting the repair of photodamaged PSII. Labeling of proteins in vivo revealed that singlet oxygen inhibited the synthesis of proteins de novo and, in particular, the synthesis of the D1 protein. Northern blotting analysis indicated that the accumulation of psbA mRNAs, which encode the D1 protein, was unaffected by the production of singlet oxygen. Subcellular localization of polysomes with bound psbA mRNAs suggested that the primary target of singlet oxygen might be the elongation step of translation.  相似文献   
147.
A Foxl2 cDNA was cloned from the Nile tilapia ovary by RT-PCR and subsequent RACE. Alignment of known Foxl2 sequences from vertebrates confirmed the conservation of the Foxl2 open reading frame and protein sequences, especially the forkhead domain and C-terminal region, while some homopolymeric runs of amino acids are found only in mammals but not in non-mammalian vertebrates. RT-PCR revealed that Foxl2 is expressed in the tilapia brain (B), pituitary (P), gill, and gonads (G), with the highest level of expression in the ovary, reflecting the involvement of Foxl2 in B-P-G axis. Northern blotting and in situ hybridization also revealed an evident sexual dimorphic expression pattern in the gonads. Foxl2 mRNA was mainly detected in the granulosa cells surrounding the oocytes. The ovarian expression of Foxl2 in tilapia begins early during the differentiation of the gonads and persists until adulthood, implying the involvement of Foxl2 in fish gonad differentiation and the maintenance of ovarian function.  相似文献   
148.
We cloned cyclin B1, B2, and B3 cDNAs from the eel testis. Northern blot analysis indicated that these cyclin B mRNAs were expressed and increased from day 3 onward after the hormonal induction of spermatogenesis, and that cyclin B3 was most dominantly expressed during spermatogenesis. In situ hybridization showed that cyclin B1 and B2 were present from the spermatogonium stage to the spermatocyte stage. On the other hand, cyclin B3 mRNA was present only in spermatogonia. Although mouse cyclin B3 is expressed specifically in the early meiotic prophase, these results indicate that eel cyclin B3 expression is limited during spermatogenesis to spermatogonia, but is not present in spermatocytes. These facts together suggest that eel cyclin B3 is specifically involved in spermatogonial proliferation (mitosis), but not in meiosis.  相似文献   
149.
Modulation of the JNK pathway in liver affects insulin resistance status   总被引:12,自引:0,他引:12  
The c-Jun N-terminal kinase (JNK) pathway is known to be activated under diabetic conditions and to possibly be involved in the progression of insulin resistance. In this study, we examined the effects of modulation of the JNK pathway in liver on insulin resistance and glucose tolerance. Overexpression of dominant-negative type JNK in the liver of obese diabetic mice dramatically improved insulin resistance and markedly decreased blood glucose levels. Conversely, expression of wild type JNK in the liver of normal mice decreased insulin sensitivity. The phosphorylation state of crucial molecules for insulin signaling was altered upon modification of the JNK pathway. Furthermore, suppression of the JNK pathway resulted in a dramatic decrease in the expression levels of the key gluconeogenic enzymes, and endogenous hepatic glucose production was also greatly reduced. Similar effects were observed in high fat, high sucrose diet-induced diabetic mice. Taken together, these findings suggest that suppression of the JNK pathway in liver exerts greatly beneficial effects on insulin resistance status and glucose tolerance in both genetic and dietary models of diabetes.  相似文献   
150.
CD8 T lymphocytes (CTL) responsive to immunodominant minor histocompatibility (minor H) Ags are thought to play a disproportionate role in allograft rejection in MHC-identical solid and bone marrow transplant settings. Although many studies have addressed the mechanisms underlying immunodominance in models of infectious diseases, cancer immunotherapy, and allograft immunity, key issues regarding the molecular basis of immunodominance remain poorly understood. In this study, we exploit the minor H Ag system to understand the relationship of the various biochemical parameters of Ag presentation and recognition to immunodominance. We show that the duration of individual minor H Ag presentation and the avidity of T cell Ag recognition influence the magnitude and, hence, the immunodominance of the CTL response to minor H Ags. These properties of CTL Ag presentation and recognition that contribute to immunodominance have implications not only for tissue transplantation, but also for autoimmunity and tumor vaccine design.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号