首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   664篇
  免费   29篇
  2023年   1篇
  2022年   2篇
  2021年   20篇
  2020年   12篇
  2019年   14篇
  2018年   28篇
  2017年   27篇
  2016年   31篇
  2015年   40篇
  2014年   32篇
  2013年   59篇
  2012年   59篇
  2011年   60篇
  2010年   38篇
  2009年   29篇
  2008年   26篇
  2007年   38篇
  2006年   38篇
  2005年   29篇
  2004年   26篇
  2003年   31篇
  2002年   21篇
  2001年   6篇
  2000年   4篇
  1999年   1篇
  1998年   3篇
  1997年   5篇
  1995年   1篇
  1989年   1篇
  1987年   1篇
  1985年   3篇
  1984年   3篇
  1983年   1篇
  1981年   1篇
  1980年   2篇
排序方式: 共有693条查询结果,搜索用时 31 毫秒
91.
Thiazolidinediones are oral antidiabetic agents that activate peroxisome proliferator-activated receptor-gamma (PPAR-gamma) and exert potent antioxidant and anti-inflammatory properties. It has also been shown that PPAR-gamma agonists induce G0/G1 arrest and apoptosis of malignant cells. Some of these effects have been suggested to result from inhibition of proteasome activity in target cells. The aim of our studies was to critically evaluate the cytostatic/cytotoxic effects of one of thiazolidinediones (pioglitazone) and its influence on proteasome activity. Pioglitazone exerted dose-dependent cytostatic/cytotoxic effects in MIA PaCa-2 cells. Incubation of tumor cells with pioglitazone resulted in increased levels of p53 and p27 and decreased levels of cyclin D1. Accumulation of polyubiquitinated proteins within cells incubated with pioglitazone suggested dysfunction of proteasome activity. However, we did not observe any influence of pioglitazone on the activity of isolated proteasome and on the proteolytic activity in lysates of pioglitazone-treated MIA PaCa-2 cells. Further, treatment with pioglitazone did not cause an accumulation of fluorescent proteasome substrates in transfected HeLa cells expressing unstable GFP variants. Our results indicate that pioglitazone does not act as a direct or indirect proteasome inhibitor.  相似文献   
92.
Recognition of the 5' cap by the eukaryotic initiation factor 4E (eIF4E) is the rate-limiting step in the ribosome recruitment to mRNAs. The regular cap consists of 7-monomethylguanosine (MMG) linked by a 5'-5' triphosphate bridge to the first transcribed nucleoside, while some primitive eukaryotes possess a N (2), N (2),7-trimethylguanosine (TMG) cap structure as a result of trans splicing. Mammalian eIF4E is highly specific to the MMG form of the cap in terms of association constants and thermodynamic driving force. We have investigated conformational changes of eIF4E induced by interaction with two cap analogues, 7-methyl-GTP and N (2), N (2),7-trimethyl-GTP. Hydrogen-deuterium exchange and electrospray mass spectrometry were applied to probe local dynamics of murine eIF4E in the apo and cap-bound forms. The data show that the cap binding induces long-range conformational changes in the protein, not only in the cap-binding pocket but also in a distant region of the 4E-BP/eIF4G binding site. Formation of the complex with 7-methyl-GTP makes the eIF4E structure more compact, while binding of N (2), N (2),7-trimethyl-GTP leads to higher solvent accessibility of the protein backbone in comparison with the apo form. The results suggest that the additional double methylation at the N (2)-amino group of the cap causes sterical effects upon binding to mammalian eIF4E which influence the overall solution dynamics of the protein, thus precluding formation of a tight complex.  相似文献   
93.
The ciliate Tetrahymena thermophila possesses a multitude of cytoskeletal structures whose differentiation is related to the basal bodies the main mediators of the cortical pattern. This investigation deals with immunolocalization using light and electron microscopy of filaments labeled by the monoclonal antibody 12G9, which in other ciliates identifies filaments involved in transmission of cellular polarities and marks cell meridians with the highest morphogenetic potential. In Tetrahymena interphase cells, mAb 12G9 localizes to the sites of basal bodies and to the striated ciliary rootlets, to the apical band of filaments and to the fine fibrillar oral crescent. We followed the sequence of development of these structures during divisional morphogenesis. The labeling of the maternal oral crescent disappears in pre-metaphase cells and reappears during anaphase, concomitantly with differentiation of the new structure in the posterior daughter cell. In the posterior daughter cell, the new apical band originates as small clusters of filaments located at the base of the anterior basal bodies of the apical basal body couplets during early anaphase. The differentiation of the band is completed in the final stages of cytokinesis and in the young post-dividing cell. The maternal band is reorganized earlier, simultaneously with the oral structure.The mAb 12G9 identifies two transient structures present only in dividing cells. One is a medial structure demarcating the two daughter cells during metaphase and anaphase, and defining the new anterior border of the posterior daughter cell. The other is a post-oral meridional filament marking the stomatogenic meridian in postmetaphase cells. Comparative analysis of immunolocalization of transient filaments labeled with mAb12G9 in Tetrahymena and other ciliates indicates that this antibody identifies a protein bound to filamentous structures, which might play a role in relying polarities of cortical domains and could be a part of a mechanism which governs the positioning of cortical organelles in ciliates.  相似文献   
94.
95.
The effect of different photoperiods: 24 h illumination and a 12:12-h light/dark (12L:12D) cycle on the growth rate and biomass productivity was studied in five algal species: Neochloris conjuncta, Neochloris terrestris, Neochloris texensis, Botryococcus braunii and Scenedesmus obliquus. The green microalgae examined differ in the reproduction mode. Continuous illumination stimulated the growth of B. braunii and S. obliquus more effectively than the growth of the microalgal species from the genus Neochloris. However, under shorter duration of light of the same intensity (12L:12D cycle), the growth of all the three species of Neochloris was stimulated. Under continuous illumination, the specific growth rate in the first phase of B. braunii and S. obliquus cultures was higher than the growth rate of Neochloris, whereas under the 12L:12D cycle, the specific growth rate of all the three Neochloris species was generally higher than that in B. braunii and S. obliquus. As a result, the light regime influenced algal biomass productivity differently. The maximum biomass productivity was obtained in B. braunii and S. obliquus cultures carried out at continuous illumination. All the Neochloris species produced biomass more efficiently at the 12L:12D cycle, which was two–threefold higher than that of B. braunii and S. obliquus. The unicellular species of the green microalgae from the genus Neochloris, examined for the first time in this study, are promising prospective objects for algal biotechnology.  相似文献   
96.
Pseudoscorpiones (pseudoscorpions, false scorpions) is an order of small terrestrial chelicerates. While most chelicerates are lecithotrophic, that is, embryos develop due to nutrients (mostly yolk) deposited in the oocyte cytoplasm, pseudoscorpions are matrotrophic, that is, embryos are nourished by the female. Pseudoscorpion oocytes contain only a small amount of yolk. The embryos develop within a brood sac carried on the abdominal site of the female and absorb nutrients by a pumping organ. It is believed that in pseudoscorpions nutrients for developing embryos are produced in the ovary during a postovulatory (secretory) phase of the ovarian cycle. The goal of our study was to analyze the structure of the female reproductive system during the secretory phase in the pseudoscorpion Chelifer cancroides, a representative of the family Cheliferidae, considered to be one of the most advanced pseudoscorpion taxa. We use diverse microscopic techniques to document that the nutritive fluid is produced not only in the ovaries but also by the epithelial cells in the oviducts. The secretory active epithelial cells are hypertrophic and polyploid and release their content by fragmentation of apical parts. Our observations also indicate that fertilization occurs in the oviducts. Moreover, in contrast to previous findings, we show that secretion of the nutritive material starts when the fertilized oocytes reach the brood sac and thus precedes formation of the pumping organ. Summing up, we show that C. cancroides exhibits traits of advanced adaptations for matrotrophy due to coordinated secretion of the nutritive fluid by the ovarian and oviductal epithelial cells, which substantially increases the efficiency of nutritive fluid formation. Since the secretion of nutrients starts before formation of the pumping organ, we suggest that the embryos are able to absorb the nutritive fluid also in the early embryonic stages.  相似文献   
97.
98.
Feather holes are small (0.5–1?mm in diameter) deformities that appear on the vanes of flight feathers. Such deformities were found in many bird species, including galliforms and passerines. Holey flight feathers may be more permeable to air, which could have a negative effect on their ability to generate aerodynamic forces. However, to date the effects of feather holes on flight performance in birds remained unclear. In this study we investigated the relationship between the number of feather holes occurring in the wing or tail feathers and short term flight performance traits – aerial manoeuvrability, maximum velocity and maximum acceleration – in barns swallows, which are long distance migrating aerial foragers. We measured short-term flight performance of barn swallows in a standardized manner in flight tunnels. We found that acceleration and velocity were significantly negatively associated with the number of holes in the wing flight feathers, but not with those in the tail feathers. In the case of acceleration the negative relationship was sex specific – while acceleration significantly decreased with the number of feather holes in females, there was no such significant association in males. Manoeuvrability was not significantly associated with the number of feather holes. These results are consistent with the hypothesis that feather holes are costly in terms of impaired flight. We discuss alternative scenarios that could explain the observed relationships. We also suggest directions for future studies that could investigate the exact mechanism behind the negative association between the number of feather holes and flight characteristics.  相似文献   
99.
In natural conditions, plants growth and development depends on environmental conditions, including the availability of micro- and macroelements in the soil. Nutrient status should thus be examined not by establishing the effects of single nutrient deficiencies on the physiological state of the plant but by combinations of them. Differences in the nutrient content significantly affect the photochemical process of photosynthesis therefore playing a crucial role in plants growth and development. In this work, an attempt was made to find a connection between element content in (i) different soils, (ii) plant leaves, grown on these soils and (iii) changes in selected chlorophyll a fluorescence parameters, in order to find a method for early detection of plant stress resulting from the combination of nutrient status in natural conditions. To achieve this goal, a mathematical procedure was used which combines principal component analysis (a tool for the reduction of data complexity), hierarchical k-means (a classification method) and a machine-learning method—super-organising maps. Differences in the mineral content of soil and plant leaves resulted in functional changes in the photosynthetic machinery that can be measured by chlorophyll a fluorescent signals. Five groups of patterns in the chlorophyll fluorescent parameters were established: the ‘no deficiency’, Fe-specific deficiency, slight, moderate and strong deficiency. Unfavourable development in groups with nutrient deficiency of any kind was reflected by a strong increase in F o and ΔVt 0 and decline in φ Po, φ Eo δ Ro and φ Ro. The strong deficiency group showed the suboptimal development of the photosynthetic machinery, which affects both PSII and PSI. The nutrient-deficient groups also differed in antenna complex organisation. Thus, our work suggests that the chlorophyll fluorescent method combined with machine-learning methods can be highly informative and in some cases, it can replace much more expensive and time-consuming procedures such as chemometric analyses.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号