首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   895篇
  免费   123篇
  2022年   14篇
  2021年   27篇
  2019年   23篇
  2018年   17篇
  2017年   28篇
  2016年   29篇
  2015年   47篇
  2014年   37篇
  2013年   50篇
  2012年   70篇
  2011年   52篇
  2010年   55篇
  2009年   28篇
  2008年   47篇
  2007年   43篇
  2006年   42篇
  2005年   35篇
  2004年   34篇
  2003年   37篇
  2002年   21篇
  2001年   17篇
  2000年   16篇
  1999年   24篇
  1998年   4篇
  1997年   8篇
  1996年   7篇
  1995年   5篇
  1994年   7篇
  1993年   4篇
  1992年   12篇
  1991年   8篇
  1990年   14篇
  1989年   9篇
  1988年   12篇
  1987年   7篇
  1986年   6篇
  1985年   6篇
  1984年   7篇
  1983年   10篇
  1982年   7篇
  1981年   5篇
  1980年   7篇
  1979年   6篇
  1978年   7篇
  1977年   6篇
  1976年   7篇
  1974年   5篇
  1972年   8篇
  1971年   8篇
  1969年   4篇
排序方式: 共有1018条查询结果,搜索用时 15 毫秒
861.
The discovery of cancer stem cells caused a paradigm shift in the concepts of origin and development of colorectal cancer. Several unresolved questions remain in this field though. Are colorectal cancer stem cells the cause or an effect of the disease? How do cancer stem cells assist in colorectal tumor dissemination to distant organs? What are the molecular or environmental factors affecting the roles of these cells in colorectal cancer? Through this review, we investigate the key findings until now and attempt to elucidate the origins, physical properties, microenvironmental niches, as well as the molecular signaling network that support the existence, self-renewal, plasticity, quiescence, and the overall maintenance of cancer stem cells in colorectal cancer. Increasing data show that the cancer stem cells play a crucial role not only in the establishment of the primary colorectal tumor but also in the distant spread of the disease. Hence, we will also look at the mechanisms adopted by cancer stem cells to influence the development of metastasis and evade therapeutic targeting and its role in the overall disease prognosis. Finally, we will illustrate the importance of understanding the biology of these cells to develop improved clinical strategies to tackle colorectal cancer.  相似文献   
862.
Vascular endothelial growth factor (VEGF) B effects blood vessel formation by binding to VEGF receptor 1. To study the specifics of the biological profile of VEGF-B in both physiological and pathological angiogenesis, a neutralising anti-VEGF-B antibody (2H10) that functions by inhibiting the binding of VEGF-B to VEGF receptor 1 was developed. Here, we present the structural features of the ‘highly ordered’ interaction of the Fab fragment of this antibody (Fab-2H10) with VEGF-B. Two molecules of Fab-2H10 bind to symmetrical binding sites located at each pole of the VEGF-B homodimer, giving a unique U-shaped topology to the complex that has not been previously observed in the VEGF family. VEGF-B residues essential for binding to the antibody are contributed by both monomers of the cytokine. Our detailed analysis reveals that the neutralising effect of the antibody occurs by virtue of the steric hindrance of the receptor-binding interface. These findings suggest that functional complementarity between VEGF-B and 2H10 can be harnessed both in analysing the therapeutic potential of VEGF-B and as an antagonist of receptor activation.  相似文献   
863.
Metabolic flux maps developed from 13C metabolic flux analysis (13C MFA) are effective tools for assessing the response of biological systems to genetic or environmental perturbations, and for identifying possible metabolic engineering targets. Experimental treatments were designed to distinguish between temperature effects prior to, and during incubation in vitro , on primary metabolism in developing soybeans. Biomass accumulation increased with temperature as did carbon partitioning into lipids. The flux through the plastidic oxidative pentose phosphate pathway (pglP) relative to sucrose intake remained fairly constant [∼56% (±24%)] when cotyledons were transferred from an optimum growth temperature to varying temperatures in in vitro culture, signifying a rigid node under these conditions. However, pglP flux ranged from 57 to 77% of sucrose intake when growth temperature in planta varied and were cultured in vitro at the same temperature (as the plant), indicating a flexible node for this case. The carbon flux through the anaplerotic reactions catalysed by plastidic malic enzyme (meP), cytosolic phosphoenolpyruvate (PEP) carboxylase and the malate (Mal) transporter from the cytosol to mitochondrion varied dramatically with temperature and had a direct influence on the carbon partitioning into protein and oil from the plastidic pyruvate (Pyr) pool. These results of the in vitro culture indicate that temperature during early stages of development has a dominant effect on establishing capacity for flux through certain components of central carbon metabolism.  相似文献   
864.
The 14th EGFL-repeat (Ten14) of human tenascin cytotactin activates the epidermal growth factor receptor (EGFR) with micromolar affinity; however, unlike EGF, Ten14-mediated activation of EGFR does not lead to receptor internalization. As the divergent signaling pathways downstream of EGFR have been shown to be triggered from plasma membrane and cytosolic locales, we investigated whether Ten14-mediated surface restriction of EGFR resulted in altered biochemical and cellular responses as compared to EGF. Molecules associated with migratory cascades were activated to a relatively greater extent in response to Ten14, with very weak activation of proliferation-associated cascades. Activation of phospholipase C gamma (PLCgamma) and m-calpain, associated with lamellipod protrusion and tail retraction, respectively, were noted at even at sub-saturating doses of Ten14. However, activation of ERK/MAPK, p90RSK, and Elk1, factors affecting proliferation, remained low even at high Ten14 concentrations. Similar activation profiles were observed for EGF-treated cells at 4 degrees C, a maneuver that limits receptor internalization. We demonstrate a concurrent effect of such altered signaling on biophysical responses-sustained migration was observed at levels of Ten14 that activated PLCgamma, but did not stimulate proliferation significantly. Here, we present a novel class of EGFR ligands that can potentially signal as a part of the extracellular matrix, triggering specific intracellular signaling cascades leading to a directed cellular response from an otherwise pleiotropic receptor. This work extends the signaling paradigm of EGFL repeat being presented in a restricted fashion as part of the extracellular matrix.  相似文献   
865.
The Tec family tyrosine kinase, IL-2-inducible T cell kinase (Itk), is expressed in T cells and mast cells. Mice lacking Itk exhibit impaired Th2 cytokine secretion; however, they have increased circulating serum IgE, but exhibit few immunological symptoms of allergic airway responses. We have examined the role of Itk in mast cell function and FcepsilonRI signaling. We report in this study that Itk null mice have reduced allergen/IgE-induced histamine release, as well as early airway hyperresponsiveness in vivo. This is due to the increased levels of IgE in the serum of these mice, because the transfer of Itk null bone marrow-derived cultured mast cells into mast cell-deficient W/W(v) animals is able to fully rescue histamine release in the W/W(v) mice. Further analysis of Itk null bone marrow-derived cultured mast cells in vitro revealed that whereas they have normal degranulation responses, they secrete elevated levels of cytokines, including IL-13 and TNF-alpha, particularly in response to unliganded IgE. Analysis of biochemical events downstream of the FcepsilonRI revealed little difference in overall tyrosine phosphorylation of specific substrates or calcium responses; however, these cells express elevated levels of NFAT, which was largely nuclear. Our results suggest that the reduced mast cell response in vivo in Itk null mice is due to elevated levels of IgE in these mice. Our results also suggest that Itk differentially modulates mast cell degranulation and cytokine production in part by regulating expression and activation of NFAT proteins in these cells.  相似文献   
866.
Francisella tularensis is a Gram-negative intracellular pathogen that causes the zoonosis tularemia. Because F. tularensis LPS causes weak TLR4 activation, we hypothesized that administration of a synthetic TLR4 agonist, aminoalkyl glucosaminide phosphate (AGP), would boost the innate immune system and compensate for reduced TLR4 stimulation. Intranasal administration of AGPs induced intrapulmonary production of proinflammatory cytokines and chemokines. Mice treated with AGPs before and after inhalation of Francisella novicida exhibited augmented cytokine and inflammatory responses to infection; reduced bacterial replication in lung, liver, and spleen; and increased survival, whereas all PBS-treated control mice died within 4 days of infection, all AGP-treated mice showed prolonged time-to-death, and 30-60% of AGP-treated mice survived. The protective effect of AGP was lost in mice lacking IFN-gamma. Long-term survivors developed specific Th1 splenocyte responses and specific Abs dominated by IgG2 isotypes. Survivors were fully protected from rechallenge with aerosolized F. novicida. Thus, preventive administration of AGP successfully modulated innate immune responses to aerosolized F. novicida, leading to protective immunity to pneumonic tularemia. This is the first report of the protective effect of a TLR ligand on resistance to F. novicida-induced pneumonic tularemia.  相似文献   
867.
Eukaryotes encode numerous proteins that either have no detectable homologs in prokaryotes or have only distant homologs. These molecular innovations of eukaryotes may be classified into three categories: proteins and domains inherited from prokaryotic precursors without drastic changes in biochemical function, but often recruited for novel roles in eukaryotes; new superfamilies or distinct biochemical functions emerging within pre-existing protein folds; and domains with genuinely new folds, apparently 'invented' at the outset of eukaryotic evolution. Most new folds emerging in eukaryotes are either alpha-helical or stabilized by metal chelation. Comparative genomics analyses point to an early phase of rapid evolution, and dramatic changes between the origin of the eukaryotic cell and the advent of the last common ancestor of extant eukaryotes. Extensive duplication of numerous genes, with subsequent functional diversification, is a distinctive feature of this turbulent era. Evolutionary analysis of ancient eukaryotic proteins is generally compatible with a two-symbiont scenario for eukaryotic origin, involving an alpha-proteobacterium (the ancestor of the mitochondria) and an archaeon, as well as key contributions from their selfish elements.  相似文献   
868.
We have studied the effects of overexpression of superoxide dismutase (SOD), a tumor suppressor protein that dismutes superoxide radical to H2O2, on breast cancer cell growth in vitro and xenograft growth in vivo. No previous work has directly compared the growth-suppressive effects of manganese SOD (MnSOD) and copper-zinc SOD (CuZnSOD). We hypothesized that either adenoviral MnSOD (AdMnSOD) or adenoviral CuZnSOD (AdCuZnSOD) gene therapy would suppress the growth of human breast cancer cells. After determining the antioxidant profiles of three human breast cell lines, MCF 10A, MDA-MB231, and MCF-7, we measured the effects of MnSOD or CuZnSOD overexpression on cell growth and survival in vitro and in vivo. Results demonstrated that infection with AdMnSOD or AdCuZnSOD increased the activity of the respective enzyme in all three cell lines. In vitro, overexpression of MnSOD or CuZnSOD decreased not only cell growth but also clonogenic survival in a dose- and transgene-dependent manner. In vivo, treatment of tumors with AdMnSOD or AdCuZnSOD decreased xenograft growth compared to controls. The first direct comparison of MnSOD to CuZnSOD overexpression indicated that CuZnSOD and MnSOD were similarly effective at suppressing cancer cell growth.  相似文献   
869.
Cardiac ATP-sensitive K+ (K(ATP)) channels are formed by Kir6.2 and SUR2A subunits. We produced transgenic mice that express dominant negative Kir6.x pore-forming subunits (Kir6.1-AAA or Kir6.2-AAA) in cardiac myocytes by driving their expression with the alpha-myosin heavy chain promoter. Weight gain and development after birth of these mice were similar to nontransgenic mice, but an increased mortality was noted after the age of 4-5 mo. Transgenic mice lacked cardiac K(ATP) channel activity as assessed with patch clamp techniques. Consistent with a decreased current density observed at positive voltages, the action potential duration was increased in these mice. Some myocytes developed EADs after isoproterenol treatment. Hemodynamic measurements revealed no significant effects on ventricular function (apart from a slightly elevated heart rate), whereas in vivo electrophysiological recordings revealed a prolonged ventricular effective refractory period in transgenic mice. The transgenic mice tolerated stress less well as evident from treadmill stress tests. The proarrhythmogenic features and lack of adaptation to a stress response in transgenic mice suggest that these features are intrinsic to the myocardium and that K(ATP) channels in the myocardium have an important role in protecting the heart from lethal arrhythmias and adaptation to stress situations.  相似文献   
870.
It has been predicted that nocodazole-inhibited cells are not synchronized because nocodazole-arrested cells with a G2-phase amount of DNA would not have a narrow cell-size range reflecting the cell size of some specific, presumably G2-phase, cell-cycle age. Size measurements of nocodazole-inhibited cells now fully confirm this prediction. Further, release from nocodazole inhibition does not produce cells that move through the cell cycle mimicking the passage of normal unperturbed cells through the cell cycle. Nocodazole, an archetypal whole-culture synchronization method, can inhibit growth to produce cells with a G2-phase amount of DNA, but such cells are not synchronized. Cells produced by a selective (i.e., non-whole-culture) method not only have a specific DNA content, but also have a narrow size distribution. The current view of cell-cycle control that is based on methods that are not suitable for cell-cycle analysis must therefore be reconsidered when results are based on whole-culture synchronization.This work was supported by the National Science Foundation (grant MCB–0323346) and (in part) by the National Institutes of Health (University of Michigan’s Cancer Center, support grant 5 P30 CA46592). G.I., M.T., and P. B. are associated with the Undergraduate Research Opportunity Program of the University of Michigan, which also supported this research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号