首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1143篇
  免费   65篇
  2022年   9篇
  2021年   8篇
  2020年   7篇
  2018年   11篇
  2017年   15篇
  2016年   24篇
  2015年   35篇
  2014年   30篇
  2013年   72篇
  2012年   58篇
  2011年   73篇
  2010年   32篇
  2009年   35篇
  2008年   59篇
  2007年   64篇
  2006年   50篇
  2005年   57篇
  2004年   43篇
  2003年   44篇
  2002年   41篇
  2001年   41篇
  2000年   38篇
  1999年   33篇
  1998年   13篇
  1997年   15篇
  1996年   13篇
  1995年   8篇
  1994年   8篇
  1993年   8篇
  1992年   21篇
  1991年   18篇
  1990年   19篇
  1989年   23篇
  1988年   21篇
  1987年   10篇
  1986年   23篇
  1985年   14篇
  1984年   10篇
  1983年   9篇
  1982年   8篇
  1981年   5篇
  1980年   6篇
  1979年   10篇
  1978年   6篇
  1977年   6篇
  1975年   6篇
  1973年   7篇
  1972年   4篇
  1971年   6篇
  1968年   6篇
排序方式: 共有1208条查询结果,搜索用时 31 毫秒
101.
102.
Objective: To investigate the influence of maximal bite force, maximal tongue pressure, number of mastications and swallowing on the oro‐pharyngeal residue in the elderly. Background: Oro‐pharyngeal residue in the elderly is an indication of dysphagia. Pharyngeal residue is especially critical as it may cause aspiration pneumonia, which is one of the major causes of death in elderly. Materials and methods: Videofluorographic recordings were performed on 14 elderly volunteers (six males, eight females, age range 65–93 years) without any history or symptoms of dysphagia. The subjects were instructed to consume 9 g of barium containing bread in two manners; free mastication and swallow (FMS: masticate and swallow freely), and limited mastication and swallow (LMS: swallow once after 30 chewing actions). The amount of oral and pharyngeal residue was evaluated using a 4‐point rating scale. Maximal occlusal force was measured by a pressure sensitive sheet, and maximal tongue pressure using a handy probe. Multiple regression analysis was performed to examine the influence of these items on the amount of oral and pharyngeal residue in FMS and LMS. Results: In FMS, age was found to be a factor which increased oral residue (p = 0.053), and the number of swallowing (p = 0.017) and the state of the prosthesis (p = 0.030) reduced the pharyngeal residue. In LMS, tongue pressure was a factor which reduced oral residue (p = 0.015) and increased pharyngeal residue (p = 0.008). Conclusion: It is suggested that in the elderly tongue pressure contributed to propulsion of the food bolus from oral cavity into the pharynx, and multiple swallowing contributed to the reduction in the amount of pharyngeal residue.  相似文献   
103.
In headwater streams, many aquatic insects rely on terrestrial detritus, while their emergence from streams often subsidizes riparian generalist predators. However, spatial variations in such reciprocal trophic linkages remain poorly understood. The present study, conducted in a northern Japanese stream and the surrounding forest, showed that pool–riffle structure brought about heterogeneous distributions of detritus deposits and benthic aquatic insects. The resulting variations in aquatic insect emergence influenced the distributions of riparian web-building spiders. Pools with slow current stored greater amounts of detritus than riffles, allowing more benthic aquatic insects to develop in pools. The greater larval biomass in pools and greater tendency for riffle insects to drift into pools at metamorphosis resulted in an emergence rate of aquatic insects from pools that was some four to five times greater than from riffles. In the riparian forest, web-building spiders (Tetragnathidae and Linyphiidae) were distributed in accordance with the emergence rates of aquatic insects, upon which both spider groups heavily depended. Consequently, the riparian strips bordering pools had a density of tetragnathid spiders that was twice as high as that of the riparian strips adjacent to riffles. Moreover, although limitations of vegetation structure prevented the aggregation of linyphiid spiders around pools, linyphiid density normalized by shrub density was higher in habitats adjacent to pools than those adjacent to riffles. The results indicated that stream geomorphology, which affects the storage of terrestrial organic material and the export of such material to riparian forests via aquatic insect emergence, plays a role in determining the strength of terrestrial–aquatic linkages in headwater ecosystems.  相似文献   
104.
Cathepsin E (CE) is an intracellular aspartic proteinase implicated in various physiological and pathological processes, yet its actual roles in vivo remain elusive. To assess the physiological significance of CE expression in tumor cells, human CE was stably expressed in human prostate carcinoma ALVA101 cells expressing very little CE activity. Tumor growth in nude mice with xenografted ALVA101/hCE cells was slower than with control ALVA101/mock cells. Angiogenesis antibody array and ELISA assay showed that this was partly due to the increased expression of some antiangiogenic molecules including interleukin 12 and endostatin in tumors induced by CE expression. In vitro studies also demonstrated that, among the cathepsins tested, CE most efficiently generated endostatin from the non-collagenous fragment of human collagen XVIII at mild acidic pH. Histological examination revealed that tumors formed by ALVA101/hCE cells were partitioned by well-developed membranous structures and covered with thickened, well-stratified hypodermal tissues. In addition, both the number and extent of activation of tumor-infiltrating macrophages were more profound in ALVA101/hCE compared to ALVA101/mock tumors. The chemotactic response of macrophages to ALVA101/hCE cells was also higher than that to ALVA/mock cells. These results thus indicate that CE expression in tumor cells induces tumor growth arrest via inhibition of angiogenesis and enhanced immune responses.  相似文献   
105.
106.

Background

Dopamine neurons derived from induced pluripotent stem cells have been widely studied for the treatment of Parkinson's disease. However, various difficulties remain to be overcome, such as tumor formation, fragility of dopamine neurons, difficulty in handling large numbers of dopamine neurons, and immune reactions. In this study, human induced pluripotent stem cell-derived precursors of dopamine neurons were encapsulated in agarose microbeads. Dopamine neurons in microbeads could be handled without specific protocols, because the microbeads protected the fragile dopamine neurons from mechanical stress.

Methods

hiPS cells were seeded on a Matrigel-coated dish and cultured to induce differentiation into a dopamine neuronal linage. On day 18 of culture, cells were collected from the culture dishes and seeded into U-bottom 96-well plates to induce cell aggregate formation. After 5 days, cell aggregates were collected from the plates and microencapsulated in agarose microbeads. The microencapsulated aggregates were cultured for an additional 45 days to induce maturation of dopamine neurons.

Results

Approximately 60% of all cells differentiated into tyrosine hydroxylase-positive neurons in agarose microbeads. The cells released dopamine for more than 40 days. In addition, microbeads containing cells could be cryopreserved.

Conclusion

hiPS cells were successfully differentiated into dopamine neurons in agarose microbeads.

General significance

Agarose microencapsulation provides a good supporting environment for the preparation and storage of dopamine neurons.  相似文献   
107.
Injury in adult tissue generally reactivates developmental programs to foster regeneration, but it is not known whether this paradigm applies to growing tissue. Here, by employing blisters, we show that epidermal wounds heal at the expense of skin development. The regenerated epidermis suppresses the expression of tissue morphogenesis genes accompanied by delayed hair follicle (HF) growth. Lineage tracing experiments, cell proliferation dynamics, and mathematical modeling reveal that the progeny of HF junctional zone stem cells, which undergo a morphological transformation, repair the blisters while not promoting HF development. In contrast, the contribution of interfollicular stem cell progeny to blister healing is small. These findings demonstrate that HF development can be sacrificed for the sake of epidermal wound regeneration. Our study elucidates the key cellular mechanism of wound healing in skin blistering diseases.  相似文献   
108.
New anthramycin-type analogues, designated usabamycin A-C (1, 2 and 3), have been isolated from cultures of Streptomyces sp. NPS853, a bacterium found in marine sediments. The structures of the new compounds were established on the basis of extensive spectroscopic analyses including 1D- and 2D-NMR ((1)H-(1)H COSY, HSQC, and HMBC) experiments. The usabamycins show weak inhibition of HeLa cell growth and selective inhibition of serotonin (5-hydroxytrypamine) 5-HT(2B) uptake.  相似文献   
109.
The vacuolar-type H+-ATPase (V-ATPase) is a multi-subunit proton pump that is involved in both intra- and extracellular acidification processes throughout human body. Subunits constituting the peripheral stalk of the V-ATPase are known to have several isoforms responsible for tissue/cell specific different physiological roles. To study the different interaction of these isoforms, we expressed and purified the isoforms of human V-ATPase peripheral stalk subunits using Escherichia coli cell-free protein synthesis system: E1, E2, G1, G2, G3, C1, C2, H and N-terminal soluble part of a1 and a2 isoforms. The purification conditions were different depending on the isoforms, maybe reflecting the isoform specific biochemical characteristics. The purified proteins are expected to facilitate further experiments to study about the cell specific interaction and regulation and thus provide insight into physiological meaning of the existence of several isoforms of each subunit in V-ATPase.  相似文献   
110.
Cellulose nanofibers were prepared by TEMPO-mediated oxidation of wood pulp and tunicate cellulose. The cellulose nanofiber suspension in water was spun into an acetone coagulation bath. The spinning rate was varied from 0.1 to 100 m/min to align the nanofibers to the spun fibers. The fibers spun from the wood nanofibers had a hollow structure at spinning rates of >10 m/min, whereas the fibers spun from tunicate nanofibers were porous. Wide-angle X-ray diffraction analysis revealed that the wood and tunicate nanofibers were aligned to the fiber direction of the spun fibers at higher spinning rates. The wood spun fibers at 100 m/min had a Young's modulus of 23.6 GPa, tensile strength of 321 MPa, and elongation at break of 2.2%. The Young's modulus of the wood spun fibers increased with an increase in the spinning rate because of the nanofiber orientation effect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号