首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2350篇
  免费   118篇
  国内免费   1篇
  2469篇
  2021年   13篇
  2018年   26篇
  2017年   16篇
  2016年   31篇
  2015年   36篇
  2014年   60篇
  2013年   265篇
  2012年   109篇
  2011年   100篇
  2010年   63篇
  2009年   71篇
  2008年   115篇
  2007年   129篇
  2006年   119篇
  2005年   125篇
  2004年   122篇
  2003年   124篇
  2002年   139篇
  2001年   26篇
  2000年   20篇
  1999年   28篇
  1998年   38篇
  1997年   31篇
  1996年   24篇
  1995年   29篇
  1994年   24篇
  1993年   33篇
  1992年   27篇
  1991年   30篇
  1990年   20篇
  1989年   20篇
  1988年   20篇
  1987年   25篇
  1986年   13篇
  1985年   30篇
  1984年   28篇
  1983年   25篇
  1982年   28篇
  1981年   34篇
  1980年   20篇
  1979年   24篇
  1978年   27篇
  1977年   16篇
  1976年   19篇
  1975年   13篇
  1974年   16篇
  1973年   15篇
  1972年   12篇
  1968年   10篇
  1967年   11篇
排序方式: 共有2469条查询结果,搜索用时 0 毫秒
971.
We investigated the interaction of GM3 lactone with influenza virus. The specific bindings of influenza virus and its hemagglutinin to GM3 lactone-containing mixed monolayers were studied by using a quartz-crystal microbalance. It has been known that gangliosides as receptors for influenza virus are also substrates for virus neuraminidase. GM3 lactone, however, was found to bind to influenza virus hemagglutinin, but not to be substrate for virus neuraminidase.  相似文献   
972.
A simple nongenetic mathematical model analyzed the processes responsible for the variations in the diapause percentage among populations of the two-spotted spider mite,Tetranychus urticae Koch. This model incorporates the following assumptions. 1) Mites have diapause (DD), non-diapause (NN), and “plastic” (DN) populations (plasticity exists in the phenotypic expression of diapause in response to habitat conditions at the time of diapause induction). 2) A heterogeneous mite habitat consists of microhabitat L, in which all the non-diapausing mites die during the winter due to the lack of winter host plants, and microhabitat O with winter hosts capable of supporting some of the non-diapausing mites overwinter. 3) Temporal fluctuation of winter conditions which affect the survival and reproduction of non-diapausing mites. Using these assumptions, we compared the fitness functions of the three populations and analyzed the conditions under which each population is favoured over the other two, thereby elucidating the processes involved in the maintenance of variability in diapause. Our analysis revealed: 1) frequent mild winters are of primary importance for the non-diapause trait to be maintained, 2) the existence of winter hosts is also important for the nondiapause trait to be favoured, and this importance depends greatly on the degree of the adaptive diapause expression in the DN mites in response to habitat conditions, i.e., the better the phenotypeenvironment matching in DN, the higher the probability that DN will be favoured, 3) The combined effect of the temporal and spatial variation enhances the maintenance of variablity in the diapause trait of the mites.  相似文献   
973.
Cellular cholesterol homeostasis involves sterol sensing at the endoplasmic reticulum (ER) and sterol export from the plasma membrane (PM). Sterol sensing at the ER requires efficient sterol delivery from the PM; however, the macromolecules that facilitate retrograde sterol transport at the PM have not been identified. ATP-binding cassette transporter A1 (ABCA1) mediates cholesterol and phospholipid export to apolipoprotein A-I for the assembly of high density lipoprotein (HDL). Mutations in ABCA1 cause Tangier disease, a familial HDL deficiency. Several lines of clinical and experimental evidence suggest a second function of ABCA1 in cellular cholesterol homeostasis in addition to mediating cholesterol efflux. Here, we report the unexpected finding that ABCA1 also plays a key role in facilitating retrograde sterol transport from the PM to the ER for sterol sensing. Deficiency in ABCA1 delays sterol esterification at the ER and activates the SREBP-2 cleavage pathway. The intrinsic ATPase activity in ABCA1 is required to facilitate retrograde sterol transport. ABCA1 deficiency causes alternation of PM composition and hampers a clathrin-independent endocytic activity that is required for ER sterol sensing. Our finding identifies ABCA1 as a key macromolecule facilitating bidirectional sterol movement at the PM and shows that ABCA1 controls retrograde sterol transport by modulating a certain clathrin-independent endocytic process.  相似文献   
974.

Background

The rate of decline in forced expiratory volume in 1 second (FEV1) is representative of the natural history of COPD. Sparse information exists regarding the associations between the magnitude of annualised loss of FEV1 with other endpoints.

Methods

Retrospective analysis of UPLIFT® trial (four-year, randomized, double-blind, placebo-controlled trial of tiotropium 18 μg daily in chronic obstructive pulmonary disease [COPD], n = 5993). Decline of FEV1 was analysed with random co-efficient regression. Patients were categorised according to quartiles based on the rate of decline (RoD) in post-bronchodilator FEV1. The St George's Respiratory Questionnaire (SGRQ) total score, exacerbations and mortality were assessed within each quartile.

Results

Mean (standard error [SE]) post-bronchodilator FEV1 increased in the first quartile (Q1) by 37 (1) mL/year. The other quartiles showed annualised declines in FEV1 (mL/year) as follows: Q2 = 24 (1), Q3 = 59 (1) and Q4 = 125 (2). Age, gender, respiratory medication use at baseline and SGRQ did not distinguish groups. The patient subgroup with the largest RoD had less severe lung disease at baseline and contained a higher proportion of current smokers. The percentage of patients with ≥ 1 exacerbation showed a minimal difference from the lowest to the largest RoD, but exacerbation rates increased with increasing RoD. The highest proportion of patients with ≥ 1 hospitalised exacerbation was in Q4 (Q1 = 19.5% [tiotropium], 26% [control]; Q4 = 33.8% [tiotropium] and 33.1% [control]). Time to first exacerbation and hospitalised exacerbation was shorter with increasing RoD. Rate of decline in SGRQ increased in direct proportion to each quartile. The group with the largest RoD had the highest mortality.

Conclusion

Patients can be grouped into different RoD quartiles with the observation of different clinical outcomes indicating that specific (or more aggressive) approaches to management may be needed.

Trial Registration

ClinicalTrials.gov number, NCT00144339  相似文献   
975.
Transmission ratio distortion (TRD) is frequently observed in inter- and intraspecific hybrids of plants, leading to a violation of Mendelian inheritance. Sex-independent TRD (siTRD) was detected in a hybrid between Asian cultivated rice and its wild ancestor. Here we examined how siTRD caused by an allelic interaction at a specific locus arose in Asian rice species. The siTRD is controlled by the S(6) locus via a mechanism in which the S(6) allele acts as a gamete eliminator, and both the male and female gametes possessing the opposite allele (S(6)(a)) are aborted only in heterozygotes (S(6)/S(6)(a)). Fine mapping revealed that the S(6) locus is located near the centromere of chromosome 6. Testcross experiments using near-isogenic lines (NILs) carrying either the S(6) or S(6)(a) alleles revealed that Asian rice strains frequently harbor an additional allele (S(6)(n)) the presence of which, in heterozygotic states (S(6)/S(6)(n) and S(6)(a)/S(6)(n)), does not result in siTRD. A prominent reduction in the nucleotide diversity of S(6) or S(6)(a) carriers relative to that of S(6)(n) carriers was detected in the chromosomal region. These results suggest that the two incompatible alleles (S(6) and S(6)(a)) arose independently from S(6)(n) and established genetically discontinuous relationships between limited constituents of the Asian rice population.  相似文献   
976.
In male ICR mice, a single intraperitoneal administration of methamphetamine (METH) (10 mg/kg) induced stereotyped behavior such as continuous sniffing, circling, and nail biting, reaching a plateau level 20 min after the injection. Subcutaneous pretreatment with clorgyline, a monoamine oxidase (MAO)-A inhibitor, at a dose of 0.1 mg/kg 2 h prior to the drug challenge significantly decreased the initial (first 20 min) intensity of stereotypies and increased the latency to onset. The effect was not observed with either higher doses of clorgyline (1 and 10 mg/kg) or l-deprenyl, a MAO-B inhibitor, at doses of 0.1–10 mg/kg. In male Wistar rats, the inhibitory effect of clorgyline on METH-induced stereotypy was not observed. Pretreatment of the mice with clorgyline (0.1 mg/kg) had no effect on apparent serotonin and dopamine turnover in the striatum, although the higher doses of clorgyline (1 and 10 mg/kg) significantly decreased the turnover. These results suggest that a low dose of clorgyline tends to increase the latency and decrease the intensity of stereotypies induced by METH in a dopamine metabolism-independent manner in mice.  相似文献   
977.
It was found by amino acid analysis before and after acid hydrolysis of human urine that most glutamic and aspartic acid was in bound form, while glycine, glutamic and aspartic acids accounted for about 70% of bound amino acids. Fractions rich in peptides containing aspartic acid were obtained by chromatography on various columns, and 7 peptides containing aspartic acid were isolated from these fractions. It may be inferred from these results and from the literatures that there are numerous oligopeptides containing aspartic acid in human urine.  相似文献   
978.
The mechanism by which malate synthesis from CO2 is increasedunder low concentrations of CO2 was investigated in C3 plants.A number of metabolites were administered to illuminated tomatoleaves, and their effects on the incorporation of 14CO2 intomalate were determined. Compared with water as a control, glycolate,glyoxylate, D,L-glycerate, glycine, phosphoglycolate and L-serineincreased malate synthesis by factors of 6.8, 3.8, 3.3, 2.5,2.3 and 2.2, respectively. The effect of exogenous glycolateon malate synthesis from CO2 was dependent on its concentrationup to 100 mu, but was independent of ambient CO2 concentration.The feeding of l-14C-glycolate in the light indicated that glycolatestimulated the carbon flow from CO2 to malate. The analysis of the products of 14CO2 fixation in illuminatedleaves supplied with glycolate showed increases in malate andsugar and decreases in serine and phosphate esters. However,this stimulated malate synthesis ceased when malonate was suppliedsimultaneously with glycolate. Treatment with glycolate didnot affect the dark 14CO2-fixation, but increased the 14C-malatesynthesis, with a corresponding decrease in 14C-aspartate and14C-glutamate. These results suggest that exogenous glycolateactivates malate dehydrogenase in leaves, and that the increasedglycolate formation at low CO2 concentrations is associatedwith the increased malate synthesis from CO2. (Received January 12, 1981; Accepted May 20, 1981)  相似文献   
979.
Lichens result from symbioses between a fungus and either a green alga or a cyanobacterium. They are known to exhibit extreme desiccation tolerance. We investigated the mechanism that makes photobionts biologically active under severe desiccation using green algal lichens (chlorolichens), cyanobacterial lichens (cyanolichens), a cephalodia-possessing lichen composed of green algal and cyanobacterial parts within the same thallus, a green algal photobiont, an aerial green alga, and a terrestrial cyanobacterium. The photosynthetic response to dehydration by the cyanolichen was almost the same as that of the terrestrial cyanobacterium but was more sensitive than that of the chlorolichen or the chlorobiont. Different responses to dehydration were closely related to cellular osmolarity; osmolarity was comparable between the cyanolichen and a cyanobacterium as well as between a chlorolichen and a green alga. In the cephalodium-possessing lichen, osmolarity and the effect of dehydration on cephalodia were similar to those exhibited by cyanolichens. The green algal part response was similar to those exhibited by chlorolichens. Through the analysis of cellular osmolarity, it was clearly shown that photobionts retain their original properties as free-living organisms even after lichenization.Lichens are ubiquitously found in all terrestrial environments, including those with extreme climates such as Antarctica and deserts; they are pioneer organisms in primary succession (Longton, 1988; Ahmadjian, 1993). Colonization ability is largely owed to lichens’ extreme tolerance for desiccation (Ahmadjian, 1993). Although lichens harbor photosynthetic green algae or cyanobacteria (blue-green algae) within their thalli, they show metabolic activity even when dried at 20°C and under conditions of 54% relative humidity (Cowan et al., 1979). This desiccation tolerance partially results from drought resistance originally exhibited by the photobiont. It is further strengthened by lichen symbiosis (Kosugi et al., 2009). Cyanolichens (symbiosis between a fungus and a cyanobacterium) are desiccation-tolerant organisms that favor humid and shady environments, whereas chlorolichens (symbiosis between a fungus and a green alga) tolerate dry and high-light environments (James and Henssen, 1976; Lange et al., 1988). Chlorolichens can perform photosynthesis when the surrounding humidity is high, but cyanolichens require some water in a liquid state (Lange et al., 1986, 2001; Nash et al., 1990; Ahmadjian, 1993).Most poikilohydric photosynthetic organisms can tolerate rapid drying. Biological activity during desiccation and recovery following drought are scarcely affected by protein synthesis inhibitors (Proctor and Smirnoff, 2000). Moderate drought tolerance is attained by increasing compatible solutes (amino acids, sugars, and sugar alcohols) as protective agents during drought stress (Mazur, 1968; Parker, 1968; Hoekstra et al., 2001). An increase in compatible solutes prevents water loss or increases water uptake from the air when humidity is high (Lange et al., 1988). It has been observed, however, that the intracellular solute concentration is low (corresponding to a sorbitol concentration of approximately 0.22 m) in the desiccation-tolerant terrestrial cyanobacterium Nostoc commune (Satoh et al., 2002; Hirai et al., 2004). N. commune photosynthetic activity is lost when incubated in low sorbitol concentrations (Hirai et al., 2004), whereas a Trebouxia spp. chlorobiont freshly isolated from the desiccation-tolerant chlorolichen Ramalina yasudae remains active under the same conditions (Kosugi et al., 2009).Different solute concentrations in photobionts may dictate habitat preferences for chlorolichens and cyanolichens (James and Henssen, 1976; Lange et al., 1988). One might expect that the ideal cellular osmotic pressure (or cellular solute concentration) of a lichenized fungus is problematic, as both the fungus and the photobiont are closely associated in the thallus (Kranner et al., 2005). Thus, we may be able to further hypothesize that the solute concentration itself in original photobionts determines the nature of desiccation tolerance in chlorolichens and cyanolichens.To better understand symbiosis in lichens, it is important to examine how the cellular osmotic pressures of both symbionts contribute to lichen photosynthesis. In this study, cellular osmotic pressures of lichens and photobionts were determined by assessing water potential. The cephalodia-possessing lichen Stereocaulon sorediiferum was chosen as a desiccation-tolerant model organism because it separately harbors a green alga and a cyanobacterium in different compartments of the lichen body. The green algal photobiont is contained in the stem- and branch-like structures, whereas the cyanobacterial photobiont (cyanobiont) is contained in the organism’s cephalodia. For comparison, several chlorolichens (R. yasudae, Parmotrema tinctorum, and Graphis spp.), cyanolichens (Collema subflaccidum and Peltigera degenii), green algae (Prasiola crispa, Trebouxia spp., and Trentepohlia aurea), and cyanobacteria (N. commune, Scytonema spp., and Stigonema spp.) were also analyzed (Fig. 1). The cyanobiont of C. subflaccidum is closely related to N. commune (Ahmadjian, 1993), and the cyanobiont of S. sorediiferum belongs to the genus Stigonema (Kurina and Vitousek, 1999). Green algal photobionts of R. yasudae and S. sorediiferum are Trebouxia spp. (Bergman and Huss-Danell, 1983). For the measurements of water potential, we had to use specimens larger than 0.1 g dry weight for one measurement. Furthermore, the specimens should cover approximately 70% of the surface area of a sample cup with 4 cm diameter that was equipped in our dewpoint potentiometer. Considering the statistical analyses, we needed large amounts of lichen and algal samples for the measurement of water potential. To conduct this study, we wanted to use free-living green algae and cyanobacteria, not the photobionts isolated from a lichen body. This is because inconsistent results were reported previously for chlorobionts liberated from lichens (Brock, 1975; Lange et al., 1990). Three major photobionts of lichens, Trebouxia, Trentepohlia, and Nostoc spp., were considered for inclusion. Until now, free-living Trebouxia spp. were not observed convincingly in nature. Therefore, cultivated Trebouxia spp. were used. Other green algae and cyanobacteria were chosen from among free-living species that (1) are closely related to some photobionts, (2) form large communities sufficient to cover the required quantity that will not destroy the local ecosystem by our sampling, (3) are easy to remove from other attached algae/microorganisms, and (4) are tolerant to desiccation. P. crispa forms large communities in nature, and the closely related species Prasiola borealis is known to be a photobiont of Mastodia tessellata. Only two freshwater species of genus Prasiola are found in Japan; P. crispa inhabits a limited area of Hokkaido Island, and Prasiola japonica is a rare species. P. crispa harvested in Antarctica and shown to be desiccation tolerant in our previous work (Kosugi et al., 2010b) was used in this study.Open in a separate windowFigure 1.Lichens analyzed in this study. A, Cyanolichen C. subflaccidum on a rock. B, Wet (left) and dry (right) thalli of cyanolichen Peltigera degenii with green moss. C, Chlorolichen R. yasudae on a rock. D, Chlorolichen Graphis spp. on a Zelkova serrata tree trunk. The grayish basal part of Graphis spp. is the site where the photobiont resides, and the dark-colored streaks are the apothecia. E, Chlorolichen Parmotrema tinctorum on a Z. serrata tree trunk. F, Cephalodia-possessing lichen S. sorediiferum. Some cephalodia are indicated by arrows. The stem- and branch-like structures are the green algae-containing compartments.  相似文献   
980.
Summary Twin and single sister chromatid exchanges (SCEs) induced by short treatments with mitomycin C (MC) and 4,5,8-trimethylpsoralen (TMP)-plus-near ultraviolet light (NUV) were analyzed in colcemid-induced endoreduplicated normal human and typical Fanconi's anemia (FA) fibroblasts with diplochromosomes. The induction rate of twin SCEs that had occurred in the first cycle (S1) after the treatment was 1.7–2.4 times higher in FA cells than in normal cells. The induction rate of single SCEs that had arisen during the second cycle (S2) long after the treatment was also much higher, though less than the twin SCE rate, in FA cells than the almost neglible rate after repair of cross-links and monoadducts in normal cells. These results in FA cells, which specifically lack the first half-excision step of the two-step cross-link repair but retain the normal monoadduct repair, indicate that MC or TMP cross-links remaining unrepaired are indeed responsible for higher inductions of twin (S1 exchange) and single SCEs (S2 exchange). Thus, these findings indicate that Shafer's model of replication bypass for cross-link-induced SCE, which predicts greatly reduced twin SCE formation in FA cells due to half cancellation, is apparently inadequate as such. We present three plausible models, incorporating the ordinary replication model, random unilateral cross-link transfer, and chromatid breakage/reunion, that can account for the probabilistic inductions of single and twin SCEs and even for no SCE formation.This work was supported in part by a grant-in-aid for cancer research from the Ministry of Education, Science and Culture, Japan  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号