首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   302篇
  免费   12篇
  2022年   4篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   6篇
  2015年   8篇
  2014年   9篇
  2013年   18篇
  2012年   19篇
  2011年   13篇
  2010年   10篇
  2009年   10篇
  2008年   8篇
  2007年   18篇
  2006年   12篇
  2005年   15篇
  2004年   20篇
  2003年   14篇
  2002年   7篇
  2001年   14篇
  2000年   27篇
  1999年   14篇
  1998年   5篇
  1996年   1篇
  1994年   2篇
  1993年   4篇
  1992年   7篇
  1991年   4篇
  1990年   6篇
  1989年   5篇
  1988年   6篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
  1984年   5篇
  1983年   1篇
  1981年   1篇
  1979年   2篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1970年   3篇
  1967年   1篇
排序方式: 共有314条查询结果,搜索用时 31 毫秒
21.
Glycopeptides containing the N-linked oligosaccharide from human serum IgA1 were analyzed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOFMS). Two glycopeptides, GP1 and GP2, prepared from the endoproteinase Asp-N digest of the IgA1 heavy chain, were derived from the CH2 domain (N-glycan site at Asn263) and the tailpiece portion (N-glycan site at Asn459), respectively. The structure of the attached sugar chain was deduced from the mass number of the glycopeptide and confirmed by a two-dimensional mapping technique for a pyridylaminated oligosaccharide. GP1 was composed of two major components having a fully galactosylated bianntena sugar chain with or without a bisecting N-acetylglucosamine (GlcNAc) residue. On the other hand, the GP2 fraction corresponded to the glycopeptides having a fully galactosylated and fucosylated bianntena sugar chain partly bearing a bisecting GlcNAc residue. Thus, the site-specific fucosylation of the N-linked oligosaccharide on the tailpiece of the 1 chain became evident for normal human serum IgA1.  相似文献   
22.
Impact of transition metals which catalyze the generation of reactive oxygen species (ROS), on activation of cell death signaling in plant cells have been documented to date. Similarly in green paramecia (Paramecium bursaria), an aquatic protozoan species harboring symbiotic green algae in the cytoplasm, toxicities of various metallic ions have been documented. We have recently examined the effects of double-stranded GC-rich DNA fragments with copper-binding nature and ROS removal catalytic activity as novel plant cell-protecting agents, using the suspension-cultured tobacco cells. Here, we show that above DNA oligomers protect the cells of green paramecia from copper-induced cell death, suggesting that the phenomenon firstly observed in tobacco cells is not limited only within higher plants but it could be universally observable in wider range of organisms.  相似文献   
23.
Ischemia-reperfusion injury induces oxidant stress, and the burst of reactive oxygen species (ROS) production after reperfusion of ischemic myocardium is sufficient to induce cell death. Mitochondrial oxidant production may begin during ischemia prior to reperfusion because reducing equivalents accumulate and promote superoxide production. We utilized a ratiometric redox-sensitive protein sensor (heat shock protein 33 fluorescence resonance energy transfer (HSP-FRET)) to assess oxidant stress in cardiomyocytes during simulated ischemia. HSP-FRET consists of the cyan and yellow fluorescent protein fluorophores linked by the cysteine-containing regulatory domain from bacterial HSP-33. During ischemia, ROS-mediated oxidation of HSP-FRET was observed, along with a decrease in cellular reduced glutathione levels. These findings were corroborated by measurements using redox-sensitive green fluorescent protein, another protein thiol ratiometric sensor, which became 93% oxidized by the end of simulated ischemia. However, cell death did not occur during ischemia, indicating that this oxidant stress is not sufficient to induce death before reperfusion. However, interventions that attenuate ischemic oxidant stress, including antioxidants or scavengers of residual O(2) that attenuate/prevent ROS generation during ischemia, abrogated cell death during simulated reperfusion. These findings reveal that, in isolated cardiomyocytes, sublethal H(2)O(2) generation during simulated ischemia regulates cell death during simulated reperfusion, which is mediated by the reperfusion oxidant burst.  相似文献   
24.
Nitric oxide (NO) has been implicated as a cardioprotective agent during ischemia/reperfusion (I/R), but the mechanism of protection is unknown. Oxidant stress contributes to cell death in I/R, so we tested whether NO protects by attenuating oxidant stress. Cardiomyocytes and murine embryonic fibroblasts were administered NO (10-1200 nM) during simulated ischemia, and cell death was assessed during reperfusion without NO. In each case, NO abrogated cell death during reperfusion. Cells overexpressing endothelial NO synthase (NOS) exhibited a similar protection, which was abolished by the NOS inhibitor N(omega)-nitro-l-arginine methyl ester. Protection was not mediated by guanylate cyclase or the mitochondrial K(ATP) channel, as inhibitors of these systems failed to abolish protection. NO did not prevent decreases in mitochondrial potential, but cells protected with NO demonstrated recovery of potential at reperfusion. Measurements using C11-BODIPY reveal that NO attenuates lipid peroxidation during ischemia and reperfusion. Measurements of oxidant stress using the ratiometric redox sensor HSP-FRET demonstrate that NO attenuates protein oxidation during ischemia. These findings reveal that physiological levels of NO during ischemia can attenuate oxidant stress both during ischemia and during reperfusion. This response is associated with a remarkable attenuation of cell death, suggesting that ischemic cell death may be a regulated event.  相似文献   
25.
It has been reported that point mutations in genes are responsible for various cancers and the selective regulation of the gene expression is an important issue to develop a new type of anticancer drugs. In this report, we present a new type of antisense molecule that photo-cross-links to an oligoribonucleotide having a point mutation site in a sequence specific manner. 2'-O-psoralen-conjugated adenosine was synthesized in four steps from adenosine and introduced in the middle of an oligodeoxyribonucleotide (2'-Ps-oligo). Compared with 5'-O-psoralen-conjugated oligodeoxyribonucleotide (5'-Ps-oligo), which has a psoralen at the 5'-end, 2'-Ps-oligo more selectively photo-cross-linked to a pyrimidine base of the site of alteration from purine to pyrimidine in the oligoribonucleotide.  相似文献   
26.
Ibudilast [1-(2-isopropylpyrazolo[1,5-a]pyridin-3-yl)-2-methylpropan-1-one] is a nonselective phosphodiesterase inhibitor used clinically to treat asthma. Efforts to selectively develop the PDE3- and PDE4-inhibitory activity of ibudilast led to replacement of the isopropyl ketone by a pyridazinone heterocycle. Structure-activity relationship exploration in the resulting 6-(pyrazolo[1,5-a]pyridin-3-yl)pyridazin-3(2H)-ones revealed that the pyridazinone lactam functionality is a critical determinant for PDE3-inhibitory activity, with the nitrogen preferably unsubstituted. PDE4 inhibition is strongly promoted by introduction of a hydrophobic substituent at the pyridazinone N(2) centre and a methoxy group at C-7′ in the pyrazolopyridine. Migration of the pyridazinone ring connection from the pyrazolopyridine 3′-centre to C-4′ strongly enhances PDE4 inhibition. These studies establish a basis for development of potent PDE4-selective and dual PDE3/4-selective inhibitors derived from ibudilast.  相似文献   
27.
28.
Aims: Staphylococcus epidermidis Esp, an extracellular serine protease, inhibits Staphylococcus aureus biofilm formation and nasal colonization. To further expand the biotechnological applications of Esp, we developed a highly efficient and economic method for the purification of recombinant Esp based on a Brevibacillus choshinensis expression–secretion system. Methods and Results: The esp gene was fused with the N‐terminal Sec‐dependent signal sequence of the B. choshinensis cell wall protein and a C‐terminal hexa‐histidine‐tag gene. The recombinant Esp was expressed and secreted into the optimized medium as an immature form and subsequently activated by thermolysin. The mature Esp was easily purified by a single purification step using nickel affinity chromatography and showed proteolytic activity as well as Staph. aureus biofilm destruction activity. Conclusions: The purification yield of the developed extracellular production system was 5 mg recombinant mature Esp per 20‐ml culture, which was much higher than that of an intracellular production system in Escherichia coli (3 mg recombinant Esp per 1‐l culture). Significance and Impact of the Study: Our findings will be a powerful tool for the production and purification of recombinant Esp and also applicable to a large variety of recombinant proteins used for basic researches and biotechnological applications.  相似文献   
29.
Regulation of LSD1 histone demethylase activity by its associated factors   总被引:11,自引:0,他引:11  
Shi YJ  Matson C  Lan F  Iwase S  Baba T  Shi Y 《Molecular cell》2005,19(6):857-864
LSD1 is a recently identified human lysine (K)-specific histone demethylase. LSD1 is associated with HDAC1/2; CoREST, a SANT domain-containing corepressor; and BHC80, a PHD domain-containing protein, among others. We show that CoREST endows LSD1 with the ability to demethylate nucleosomal substrates and that it protects LSD1 from proteasomal degradation in vivo. We find hyperacetylated nucleosomes less susceptible to CoREST/LSD1-mediated demethylation, suggesting that hypoacetylated nucleosomes may be the preferred physiological substrates. This raises the possibility that histone deacetylases and LSD1 may collaborate to generate a repressive chromatin environment. Consistent with this model, TSA treatment results in derepression of LSD1 target genes. While CoREST positively regulates LSD1 function, BHC80 inhibits CoREST/LSD1-mediated demethylation in vitro and may therefore confer negative regulation. Taken together, these findings suggest that LSD1-mediated histone demethylation is regulated dynamically in vivo. This is expected to have profound effects on gene expression under both physiological and pathological conditions.  相似文献   
30.
The possible role of calcineurin in cardiac hypertrophy induced by calmodulin (CaM) overexpression in the heart was investigated. CaM transgenic (CaM-TG) mice developed marked cardiac hypertrophy and exhibited up-regulation of atrial natriuretic factor (ANF) and beta-myosin heavy chain gene expression in the heart during the first 2 weeks after birth. The activity of calcineurin in the heart was also significantly increased in CaM-TG mice compared with wild-type littermates. Treatment of CaM-TG mice with the calcineurin inhibitor FK506 (1mg/kg per day) prevented the increase in the heart-to-body weight ratio as well as that in cardiomyocyte width. FK506 also inhibited the induction of fetal-type cardiac gene expression in CaM-TG mice. Overexpression of CaM in cultured rat cardiomyocytes activated the ANF gene promoter in a manner sensitive to FK506. Activation of a calcineurin-dependent pathway thus contributes to the development of cardiac hypertrophy induced by CaM overexpression in the heart.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号