首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   501篇
  免费   18篇
  519篇
  2021年   4篇
  2020年   3篇
  2019年   4篇
  2017年   4篇
  2016年   4篇
  2015年   8篇
  2014年   10篇
  2013年   42篇
  2012年   16篇
  2011年   20篇
  2010年   14篇
  2009年   13篇
  2008年   26篇
  2007年   27篇
  2006年   37篇
  2005年   19篇
  2004年   33篇
  2003年   28篇
  2002年   23篇
  2001年   9篇
  2000年   9篇
  1999年   9篇
  1998年   12篇
  1996年   6篇
  1995年   6篇
  1994年   8篇
  1993年   4篇
  1992年   3篇
  1991年   3篇
  1990年   5篇
  1989年   4篇
  1988年   3篇
  1987年   6篇
  1985年   7篇
  1984年   8篇
  1983年   11篇
  1982年   13篇
  1981年   5篇
  1980年   3篇
  1979年   3篇
  1978年   4篇
  1977年   3篇
  1976年   4篇
  1975年   5篇
  1973年   3篇
  1970年   3篇
  1968年   2篇
  1966年   2篇
  1963年   2篇
  1956年   2篇
排序方式: 共有519条查询结果,搜索用时 15 毫秒
91.
Fragments of Ecklonia cava Kjellman were cultured under controlled laboratory conditions of light irradiance, water temperature, and photoperiod. To clarify the relationship between the maturation of E. cava and the photosynthetic products, laminaran, the content in the fragments was measured with the progress of maturation. The culture conditions ranged from 12.5 to 100 µmol m?2 s?1, 10–25°C, and 14 : 10 h LD (light : dark) to 10 : 14 h LD. In the case of low light conditions, despite an optimum temperature for maturation, the fragments did not form sori and laminaran was not accumulated during the culture period. In the case of sufficient light and non‐optimum temperature conditions, the fragments did not form sori, but laminaran was accumulated. When the fragments were cultured under optimum light and temperature conditions for maturation, laminaran was accumulated in the early stage of maturation, just before or after cortex of the bladelets thickened, and decreased with the progress of maturation, and all fragments matured regardless of the length of the photoperiod. So, these results support the idea that laminaran is used as the main respiratory substrate in the maturation of E. cava.  相似文献   
92.
Our purpose was to noninvasively assess formation of the microvasculature, blood-brain barrier (BBB) and blood-CSF barrier formation of prenatal X-ray-induced CNS abnormalities using quantitative MRI. Eight pregnant female Sprague-Dawley rats were divided into two groups consisting of control and X-irradiated animals. After birth, 20 neonatal male rats were divided into four groups of five rats. To evaluate the development of the BBB, changes in T(1) induced by Gd-DTPA were compared quantitatively in normal and prenatally irradiated animals in the formative period 1 to 2 weeks after birth. To assess the abnormalities of the microvasculature, quantitative perfusion MRI and MR angiography were also used. Histology was also performed to evaluate the BBB (albumin) and vascular endothelial cells (laminin). Decreased cerebral blood flow (CBF) and angioarchitectonic abnormalities were observed in the prenatally irradiated rats. However, abnormalities of the BBB and blood-CSF barrier were not observed using Gd-enhanced MRI and albumin staining. Quantitative perfusion MRI, MR angiography and Gd-enhanced T(1) mapping are useful for assessing CNS disturbance after prenatal exposure to radiation. These techniques provide important diagnostic information for assessing the condition of patients during the early stages of life after accidental or unavoidable prenatal exposure to radiation.  相似文献   
93.
Long-term disuse results in atrophy in skeletal muscle, which is characterized by reduced functional capability, impaired locomotor condition, and reduced resistance to fatigue. Here we show how long-term disuse affects contractility and fatigue resistance in single fibers of soleus muscle taken from the hindlimb immobilization model of the rat. We found that long-term disuse results in depression of caffeine-induced transient contractions in saponin-treated single fibers. However, when normalized to maximal Ca(2+)-activated force, the magnitude of the transient contractions became similar to that in control fibers. Control experiments indicated that the active force depression in disused muscle is not coupled with isoform switching of myosin heavy chain or troponin, or with disruptions of sarcomere structure or excessive internal sarcomere shortening during contraction. In contrast, our electronmicroscopic observation supported our earlier observation that interfilament lattice spacing is expanded after disuse. Then, to investigate the molecular mechanism of the reduced fatigue resistance in disused muscle, we compared the inhibitory effects of inorganic phosphate (Pi) on maximal Ca(2+)-activated force in control vs. disused fibers. The effect of Pi was more pronounced in disused fibers, and it approached that observed in control fibers after osmotic compression. These results suggest that contractile depression in disuse results from the lowering of myofibrillar force-generating capacity, rather than from defective Ca(2+) mobilization, and the reduced resistance to fatigue is from an enhanced inhibitory effect of Pi coupled with a decrease in the number of attached cross bridges, presumably due to lattice spacing expansion.  相似文献   
94.
An extract obtained from Cynops sperm induced the activation of both Cynops and Xenopus eggs with accompanying changes in the potential of the egg membrane that were quite similar to those caused by the Cynops sperm. The activation-inducing properties of the extract were abolished by treatment with proteinase K or by heating (60°C, 15 min) and were associated with a protease activity against peptidyl Arg-MCA substrates. The activation of Xenopus eggs by the extract was inhibited by those substrates, or by protease inhibitors, aprotinin or leupeptin. The protease activity was localized in the acrosomal region of Cynops sperm. The activation of Xenopus eggs by the extract was prevented when the exterior concentration of Ca2+ions, [Ca2+]0, was reduced to 1.5 μM, but it was enhanced when [Ca2+]0 was increased to 340 μM. The activation of Xenopus eggs by the extract was not affected by positive clamping when [Ca2+]0 was 340 μM. These results suggest that the sperm extract contains a protease that causes an increase in the influx of Ca2+ions that results in voltage-insensitive activation of the egg.  相似文献   
95.
The effect of the oxidation of amino acid residues on albumin on its in vivo elimination was investigated using mutants and oxidized HSAs. The single-residue mutants (H146A, K199A, W214A, R218H, R410A, Y411A) and oxidized HSAs were produced by the recombinant DNA techniques and incubation with a metal ion-catalyzed oxidation (MCO) system for 12, 24, 48 or 72 h. Pharmacokinetics were evaluated in mice after labeling with 111In. Structural and functional properties were examined by several spectroscopic techniques. Time-dependent increase in carbonyl group content resulted in increase in the liver clearance of oxidized HSAs. Slight decreases in alpha-helical content as the result of oxidation was induced by the increases in accessible hydrophobic areas and the net negative charge on the HSA molecule. No significant change in the pharmacokinetics and structural properties was observed for the W214A, R218H and Y411A mutants, but the properties for the H146A, K199A and R410A mutants were affected (extent of effect: R410A > K199A > H146A). The liver clearance of these proteins is closely correlated to hydrophobicity (r = 0.929, P < 0.01) and the net charge of the proteins (r=0.930, P < 0.01). The rate of elimination of HSA is closely related to the hydrophobicity and net charge of the molecule. Further, the R410A mutants had a short half-life and structure similar to oxidized HSA after oxidation. Therefore, the modification of Arg-410 via oxidative stress may promote the elimination of HSA.  相似文献   
96.
Legumain/asparaginyl endopeptidase (EC 3.4.22.34) is a novel cysteine protease that is abundantly expressed in the late endosomes and lysosomes of renal proximal tubular cells. Recently, emerging evidence has indicated that legumain might play an important role in control of extracellular matrix turnover in various pathological conditions such as tumor growth/metastasis and progression of atherosclerosis. We initially found that purified legumain can directly degrade fibronectin, one of the main components of the extracellular matrix, in vitro. Therefore, we examined the effect of legumain on fibronectin degradation in cultured mouse renal proximal tubular cells. Fibronectin processing can be inhibited by chloroquine, an inhibitor of lysosomal degradation, and can be enhanced by the overexpression of legumain, indicating that fibronectin degradation occurs in the presence of legumain in lysosomes from renal proximal tubular cells. Furthermore, in legumain-deficient mice, unilateral ureteral obstruction (UUO)-induced renal interstitial protein accumulation of fibronectin and renal interstitial fibrosis were markedly enhanced. These findings indicate that legumain might have an important role in extracellular matrix remodeling via the degradation of fibronectin in renal proximal tubular cells.  相似文献   
97.
Vertebrate troponin regulates muscle contraction through alternative binding of the C-terminal region of the inhibitory subunit, troponin-I (TnI), to actin or troponin-C (TnC) in a Ca(2+)-dependent manner. To elucidate the molecular mechanisms of this regulation by molluskan troponin, we compared the functional properties of the recombinant fragments of Akazara scallop TnI and rabbit fast skeletal TnI. The C-terminal fragment of Akazara scallop TnI (ATnI(232-292)), which contains the inhibitory region (residues 104-115 of rabbit TnI) and the regulatory TnC-binding site (residues 116-131), bound actin-tropomyosin and inhibited actomyosin-tropomyosin Mg-ATPase. However, it did not interact with TnC, even in the presence of Ca(2+). These results indicated that the mechanism involved in the alternative binding of this region was not observed in molluskan troponin. On the other hand, ATnI(130-252), which contains the structural TnC-binding site (residues 1-30 of rabbit TnI) and the inhibitory region, bound strongly to both actin and TnC. Moreover, the ternary complex consisting of this fragment, troponin-T, and TnC activated the ATPase in a Ca(2+)-dependent manner almost as effectively as intact Akazara scallop troponin. Therefore, Akazara scallop troponin regulates the contraction through the activating mechanisms that involve the region spanning from the structural TnC-binding site to the inhibitory region of TnI. Together with the observation that corresponding rabbit TnI-fragment (RTnI(1-116)) shows similar activating effects, these findings suggest the importance of the TnI N-terminal region not only for maintaining the structural integrity of troponin complex but also for Ca(2+)-dependent activation.  相似文献   
98.
Six missense mutations in human cardiac troponin I (cTnI) were recently found to cause restrictive cardiomyopathy (RCM). We have bacterially expressed and purified these human cTnI mutants and examined their functional and structural consequences. Inserting the human cTnI into skinned cardiac muscle fibers showed that these mutations had much greater Ca2+-sensitizing effects on force generation than the cTnI mutations in hypertrophic cardiomyopathy (HCM). The mutation K178E in the second actin-tropomyosin (Tm) binding region showed a particularly potent Ca2+-sensitizing effect among the six RCM-causing mutations. Circular dichroism and nuclear magnetic resonance spectroscopy revealed that this mutation does not extensively affect the structure of the whole cTnI molecule, but induces an unexpectedly subtle change in the structure of a region around the mutated residue. The results indicate that the K178E mutation has a localized effect on a structure that is critical to the regulatory function of the second actin-Tm binding region of cTnI. The present study also suggests that both HCM and RCM involving cTnI mutations share a common feature of increased Ca2+ sensitivity of cardiac myofilament, but more severe change in Ca2+ sensitivity is associated with the clinical phenotype of RCM.  相似文献   
99.
Novel C-seco-taxoids were synthesized from 10-deacetylbaccatin III and their potencies evaluated against drug-sensitive and drug-resistant cancer cell lines. The drug-resistant cell lines include ovarian cancer cell lines resistant to cisplatin, topotecan, adriamycin and paclitaxel overexpressing class III β-tubulin, A2780TC1 and A2780TC3. The last two cell lines were selected through chronic exposure of A2780wt to paclitaxel and Pgp blocker cyclosporine. All novel C-seco-taxoids exhibited remarkable potency against A2780TC1 and A2780TC3 cell lines, and no cross resistance to cisplatin- and topotecan-resistant cell lines, A2780CIS and A2780TOP. Four of those C-seco-taxoids exhibit much higher activities than IDN5390 against paclitaxel-resistant cell lines, A2780ADR, A2780TC1 and A2780TC3. SB-CST-10202 possesses the best all-round high potencies across different drug-resistant cell lines. Molecular modeling studies, including molecular dynamics simulations, on the drug-protein complexes of class I and III β-tubulins were performed to identify possible cause of the remarkable potency of these C-seco-taxoids against paclitaxel-resistant cell lines overexpressing class III β-tubulin.  相似文献   
100.
Cardiomyocytes release (or metabolize) several diffusible agents (e.g., nitric oxide [NO], endothelin-1 [ET-1], and angiotensin II) that exert direct effects on myocyte function under various pathologic conditions. Although cardiac hypertrophy is a compensatory mechanism in response to different cardiovascular diseases, there can be a pathologic transition in which the myocardium becomes dysfunctional. Recently, NO has been found to be an important regulator of cardiac remodeling. Specifically, NO has been recognized as a potent antihypertrophic and proapoptotic mediator in cultured cardiomyocytes. We demonstrated that ET-1-induced hypertrophic remodeling in neonatal cardiomyocytes was arrested by pretreatment with eicosapentaenoic acid (EPA), a major component of fish oil. In some recent studies, EPA has demonstrated cardioprotective effects by modulating NO. This study investigated the changes in NO synthase (NOS) in ET-1-induced hypertrophied cardiomyocytes and in total levels of nitrates and nitrites. Ventricular cardiomyocytes were isolated from 2-day-old Sprague-Dawley rats and were cultured in D-MEM/Ham F12 supplemented with 0.1% fatty acid-free bovine serum albumin for 3 days. At Day 4 of culture, the cardiomyocytes were divided into three groups: control group, ET-1 (0.1 nM) group, and ET-1 pretreated with EPA (10 microM) group. NOS gene expression was evaluated 24 hrs after treatment using real-time polymerase chain reaction. Endothelial NOS (eNOS) mRNA expression was decreased in the ET-1 group compared with controls and was unchanged by pretreatment with EPA. mRNA expression of inducible NOS (iNOS) was significantly increased in ET-1-treated cardiomyocytes and was suppressed by EPA pretreatment. Neuronal NOS gene expression and total NO level did not exhibit a statistically significant change in any of the groups. There may be some interaction between ET-1, eNOS, and iNOS in ET-1-induced and EPA-regressed hypertrophied cardiomyocytes that suppress iNOS expression without modulating total NO level or eNOS gene expression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号