首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111257篇
  免费   13321篇
  国内免费   413篇
  2021年   749篇
  2018年   1003篇
  2017年   968篇
  2016年   1271篇
  2015年   1578篇
  2014年   1970篇
  2013年   2501篇
  2012年   2902篇
  2011年   2856篇
  2010年   1913篇
  2009年   1878篇
  2008年   2405篇
  2007年   2387篇
  2006年   2381篇
  2005年   2182篇
  2004年   2117篇
  2003年   2140篇
  2002年   2123篇
  2001年   9667篇
  2000年   9536篇
  1999年   7218篇
  1998年   1623篇
  1997年   1802篇
  1996年   1582篇
  1995年   1418篇
  1994年   1312篇
  1993年   1258篇
  1992年   4810篇
  1991年   4532篇
  1990年   4001篇
  1989年   4022篇
  1988年   3620篇
  1987年   3087篇
  1986年   2781篇
  1985年   2685篇
  1984年   1979篇
  1983年   1735篇
  1982年   1237篇
  1981年   989篇
  1980年   915篇
  1979年   1763篇
  1978年   1363篇
  1977年   1200篇
  1976年   1028篇
  1975年   1157篇
  1974年   1169篇
  1973年   1164篇
  1972年   1036篇
  1971年   956篇
  1970年   824篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
421.
Summary In ethanol production with immobilized yeast a major problem is the provision of nutrients to these highly concentrated cells. O2 being one of the nutrients of utmost importance to yeast cells, was fed into a column packed with beads with a cell loading of more than 40 g/l. Since addition of large volume of air or O2 to a cylindrical column reactor would aggravate the problems of pressure build up and channelling caused by the evolving CO2 gas, a tapered-column reactor and pulsed flow of oxygen gas was used. The supplement of O2 gas to the tapered column increased the productivity from 21.1 g ethanol x (l gel x h)-1 to 26.7 g x (l gel x h)-1, when the ethanol concentration at the outlet was about 80 g/l. The yield coefficient of ethanol was also increased from 0.41 g ethanol/g glucose to 0.43 after O2 supplement was started. The effects of frequency and duration of O2 supplement were also determined.  相似文献   
422.
Two new beta-xylosyl derivatives of ginsenoside Re, 20(S)-protopanaxatriol 6-O-alpha-L-rhamnopyranosyl-(1 --> 2)-[beta-D-xylopyranosyl-(1 --> 4)]-beta-D-glucopyranosyl-20-O-beta-D-glucopyranoside and 20(S)-protopanaxatriol 6-O-alpha-L-rhamnopyranosyl-(1 --> 2)-[beta-D-xylopyranosyl-(1 --> 6)]-beta-D-glucopyranosyl-20-O-beta-D-glucopyranoside, were respectively synthesized from p-nitrophenyl beta-D-xylopyranoside and phenyl beta-D-xylopyranoside as donors and ginsenoside Re as the acceptor in 25% acetone and acetonitrile by a cellulase preparation from Trichoderma viride and a beta-galactosidase preparation from Aspergillus oryzae. The latter enzyme preparation also catalyzed the hydrolysis of ginsenoside Re to the minor saponin, ginsenoside Rg2.  相似文献   
423.
424.
Mycolactone, a lipid-like toxin, is the major virulence factor of Mycobacterium ulcerans, the etiological agent of Buruli ulcer. Its involvement in lesion development has been widely described in early stages of the disease, through its cytotoxic and immunosuppressive activities, but less is known about later stages. Here, we revisit the role of mycolactone in disease outcome and provide the first demonstration of the pro-inflammatory potential of this toxin. We found that the mycolactone-containing mycobacterial extracellular vesicles produced by M. ulcerans induced the production of IL-1β, a potent pro-inflammatory cytokine, in a TLR2-dependent manner, targeting NLRP3/1 inflammasomes. We show our data to be relevant in a physiological context. The in vivo injection of these mycolactone-containing vesicles induced a strong local inflammatory response and tissue damage, which were prevented by corticosteroids. Finally, several soluble pro-inflammatory factors, including IL-1β, were detected in infected tissues from mice and Buruli ulcer patients. Our results revisit Buruli ulcer pathophysiology by providing new insight, thus paving the way for the development of new therapeutic strategies taking the pro-inflammatory potential of mycolactone into account.  相似文献   
425.
A strain of Lactobacillus plantarum which was unable to produce manganese (Mn)catalase (ATCC 8014) grew somewhat more rapidly and to a slightly higher plateau density than did an Mn catalase-positive strain (ATCC 14421), and this was the case during aerobic or anaerobic growth. However, when maintenance of viability was measured during the stationary phase of the growth cycle, the advantage provided by Mn catalase was obvious. Thus, the viability of ATCC 14431 was undiminished over 21 h of aerobic incubation, during the stationary phase, whereas that of ATCC 8014 decreased by seven orders of magnitude. Addition of catalase to the medium or growth in the presence of hemin, which allows catalase synthesis, protected ATCC 8014 against this loss of viability. Suppression of Mn catalase within ATCC 14431 by treatment with NH2OH caused the cells to lose viability when exposed to 4 mM H2O2.  相似文献   
426.
Degenerative and regenerative changes in the ductal architecture of the ventral and dorsolateral prostates (VP and DLP) of the adult mouse were investigated in microdissected specimens over a time-course of 14 days following castration and subsequently during 14 days of administration of testosterone propionate. After castration, about 35% of the ductal tips and branch-points were lost in distal regions (usually near the capsule) in both prostatic lobes. By contrast, in more proximal regions of the prostate (closer to the urethra), the ducts survived in an atrophic condition. The ductal morphology that had been lost in the distal regions completely regenerated after testosterone propionate was administered to the castrated males. In the VP, androgen replacement simply returned the gland to its former size with moderate ductal distension; in the DLP, excessive epithelial infoldings and ductal distension were elicited in the distal regions of the ducts after 14 days of treatment with testosterone propionate. These results suggest that androgenic responsiveness and dependency are different in distal versus proximal ducts. Distal ducts are exquisitely androgen-dependent and androgen-sensitive; in proximal regions, androgen-dependency is not as strict.  相似文献   
427.
428.
429.
430.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号