首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2004篇
  免费   73篇
  国内免费   5篇
  2015年   24篇
  2014年   22篇
  2013年   55篇
  2012年   58篇
  2011年   52篇
  2010年   65篇
  2009年   107篇
  2008年   64篇
  2007年   92篇
  2006年   58篇
  2005年   69篇
  2004年   37篇
  2003年   30篇
  2002年   15篇
  1998年   32篇
  1997年   47篇
  1996年   42篇
  1995年   31篇
  1994年   28篇
  1993年   25篇
  1992年   36篇
  1991年   20篇
  1990年   28篇
  1989年   24篇
  1988年   24篇
  1987年   15篇
  1984年   15篇
  1983年   18篇
  1982年   16篇
  1980年   15篇
  1979年   20篇
  1978年   16篇
  1977年   17篇
  1976年   17篇
  1975年   25篇
  1973年   19篇
  1972年   15篇
  1971年   14篇
  1959年   33篇
  1958年   65篇
  1957年   77篇
  1956年   69篇
  1955年   55篇
  1954年   64篇
  1953年   62篇
  1952年   59篇
  1951年   43篇
  1950年   18篇
  1949年   33篇
  1948年   19篇
排序方式: 共有2082条查询结果,搜索用时 15 毫秒
91.
Global change and root function   总被引:7,自引:0,他引:7  
Global change includes land-use change, elevated CO2 concentrations, increased temperature and increased rainfall variability. All four aspects by themselves and in combination will influence the role of roots in linking below- and above-ground ecosystem function via organic and inorganic resource flows. Root-mediated ecosystem functions which may be modified by global change include below-ground resource (water, nutrients) capture, creation and exploitation of spatial heterogeneity, buffering of temporal variations in above-ground factors, supply and storage of C and nutrients to the below-ground ecosystem, mobilization of nutrients and C from stored soil reserves, and gas exchange between soil and atmosphere including the emission from soil of greenhouse gases. The theory of a functional equilibrium between root and shoot allocation is used to explore predicted responses to elevated CO2 in relation to water or nutrient supply as limiting root function. The theory predicts no change in root:shoot allocation where water uptake is the limiting root function, but substantial shifts where nutrient uptake is (or becomes) the limiting function. Root turnover will not likely be influenced by elevated CO2, but by changes in regularity of water supply. A number of possible mechanisms for root-mediated N mineralization is discussed in the light of climate change factors. Rhizovory (root consumption) may increase under global change as the balance between plant chemical defense and adapted root consuming organisms may be modified during biome shifts in response to climate change. Root-mediated gas exchange allows oxygen to penetrate into soils and methane (CH4) to escape from wetland soils of tundra ecosystems as well as tropical rice production systems. The effect on net greenhouse gas emissions of biome shifts (fens replacing bogs) as well as of agricultural land management will depend partly on aerenchyma in roots.  相似文献   
92.
We used satellite‐derived estimates of global fire emissions and a chemical transport model to estimate atmospheric nitrogen (N) fluxes from savanna and deforestation fires in tropical ecosystems. N emissions and reactive N deposition led to a net transport of N equatorward, from savannas and areas undergoing deforestation to tropical forests. Deposition of fire‐emitted N in savannas was only 26% of emissions – indicating a net export from this biome. On average, net N loss from fires (the sum of emissions and deposition) was equivalent to approximately 22% of biological N fixation (BNF) in savannas (4.0 kg N ha?1 yr?1) and 38% of BNF in ecosystems at the deforestation frontier (9.3 kg N ha?1 yr?1). Net N gains from fires occurred in interior tropical forests at a rate equivalent to 3% of their BNF (0.8 kg N ha?1 yr?1). This percentage was highest for African tropical forests in the Congo Basin (15%; 3.4 kg N ha?1 yr?1) owing to equatorward transport from frequently burning savannas north and south of the basin. These results provide evidence for cross‐biome atmospheric fluxes of N that may help to sustain productivity in some tropical forest ecosystems on millennial timescales. Anthropogenic fires associated with slash and burn agriculture and deforestation in the southern part of the Amazon Basin and across Southeast Asia have substantially increased N deposition in these regions in recent decades and may contribute to increased rates of carbon accumulation in secondary forests and other N‐limited ecosystems.  相似文献   
93.
94.
Cell Cycle Control in Arabidopsis   总被引:1,自引:0,他引:1  
Although the basic mechanism of cell cycle control is conservedamong eukaryotes, its regulation differs in each type of organism.Plants have unique developmental features that distinguish themfrom other eukaryotes. These include the absence of cell migration,the formation of organs throughout the entire life-span fromspecialized regions called meristems, and the potency of non-dividingcells to re-enter the cell cycle. The study of plant cell cyclecontrol genes is expected to contribute to the understandingof these unique developmental phenomena. The principal regulatorsof the eukaryotic cell cycle, the cyclin-dependent kinases (CDKs)and cyclins, are conserved in plants. This review focuses oncell cycle regulation in the plant Arabidopsis thaliana . Whileexpression of one Arabidopsis CDK gene, Cdc2aAt, was positivelycorrelated with the competence of cells to divide, expressionof a mitotic-like cyclin, cyc1At, was almost exclusively confinedto dividing cells. The expression of the Arabidopsis -type cyclinsappears to be an early stage in the response of plant cellsto external and internal stimuli. Arabidopsis thaliana (L.) Heynh.; cell cycle; CDK; cyclin; plant development; plant hormone  相似文献   
95.
We present an approach for providing quantitative insight into the production‐ecological sustainability of biofuel feedstock production systems. The approach is based on a simple crop‐soil model and was used for assessing feedstock from current and improved production systems of cassava for bioethanol. Assessments were performed for a study area in Mozambique, a country considered promising for biomass production. Our focus is on the potential role of smallholders in the production of feedstock for biofuels. We take cassava as the crop for this purpose and compare it with feedstock production on plantations using sugarcane, sweet sorghum and cassava as benchmarks. Production‐ecological sustainability was defined by seven indicators related to resource‐use efficiency, soil quality, net energy production and greenhouse gas (GHG) emissions. Results indicate that of the assessed systems, sugarcane performed better than cassava, although it requires substantial water for irrigation. Targeted use of nutrient inputs improved sustainability of smallholder cassava. Cassava production systems on more fertile soils were more sustainable than those on less fertile soils; the latter required more external inputs for achieving the same output, affecting most indicators negatively and reducing the feasibility for smallholders. Cassava and sweet sorghum performed similarly. Cassava production requires much more labour per hectare than production of sugarcane or sweet sorghum. Production of bioethanol feedstock on cultivated lands was more sustainable and had potential for carbon sequestration, avoiding GHG emissions from clearing natural vegetation if new land is opened.  相似文献   
96.
97.
作者以前报道过几种快速生长的固氮蓝藻在某种条件下能好气光放氢,其速度可以达到光合放氧速度的10—15%,但这种活性只有在不积累氢气的流动气相下或在短时间内发生。本文报道用亚硝基胍诱变所得到的Anabaena spp。Strain CA的高光放氢突变种——N9A和18A——的筛选和氢代谢特点。在达生长饱和光照以后,野生型的光放氢活性与光照强度的增加成正相关,而其吸氢活性则与之成负相关,显示高光照强度可能抑制吸氢酶的活性。无论在什么光强下,均测不到两个突变种的吸氢活性,暗示在突变种中,吸氢酶或有关系统受损伤。把细胞固相化在琼脂上,在密闭系统中,高光强下培养50个小时,两个突变种光释放和积累的氢分别为野生型的2倍(N9A)和6倍(18A),后者等于氢占气相(1%CO_2的空气)的1.8%。两个突变种在生长速度、叶绿素含量、乙炔还原活性以及光合放氧方面与野生型无明显不同。当以含50—100nM的镍离子的培养基培养时,野生型的好气净产氢活性完全丢失,其吸氢活性却增加约10倍。培养基中镍离子的存在,对两个突变种的高光放氢活性则毫无影响,而且在此情况下,仍测不出其吸氢活性。实验结果表明,这两个突变种系吸氢酶缺陷型突变种。  相似文献   
98.
99.
100.
Monitoring and understanding global change requires a detailed focus on upscaling, the process for extrapolating from the site‐specific scale to the smallest scale resolved in regional or global models or earth observing systems. Leaf area index (LAI) is one of the most sensitive determinants of plant production and can vary by an order of magnitude over short distances. The landscape distribution of LAI is generally determined by remote sensing of surface reflectance (e.g. normalized difference vegetation index, NDVI) but the mismatch in scales between ground and satellite measurements complicates LAI upscaling. Here, we describe a series of measurements to quantify the spatial distribution of LAI in a sub‐Arctic landscape and then describe the upscaling process and its associated errors. Working from a fine‐scale harvest LAI–NDVI relationship, we collected NDVI data over a 500 m × 500 m catchment in the Swedish Arctic, at resolutions from 0.2 to 9.0 m in a nested sampling design. NDVI scaled linearly, so that NDVI at any scale was a simple average of multiple NDVI measurements taken at finer scales. The LAI–NDVI relationship was scale invariant from 1.5 to 9.0 m resolution. Thus, a single exponential LAI–NDVI relationship was valid at all these scales, with similar prediction errors. Vegetation patches were of a scale of ~0.5 m and at measurement scales coarser than this, there was a sharp drop in LAI variance. Landsat NDVI data for the study catchment correlated significantly, but poorly, with ground‐based measurements. A variety of techniques were used to construct LAI maps, including interpolation by inverse distance weighting, ordinary Kriging, External Drift Kriging using Landsat data, and direct estimation from a Landsat NDVI–LAI calibration. All methods produced similar LAI estimates and overall errors. However, Kriging approaches also generated maps of LAI estimation error based on semivariograms. The spatial variability of this Arctic landscape was such that local measurements assimilated by Kriging approaches had a limited spatial influence. Over scales >50 m, interpolation error was of similar magnitude to the error in the Landsat NDVI calibration. The characterisation of LAI spatial error in this study is a key step towards developing spatio‐temporal data assimilation systems for assessing C cycling in terrestrial ecosystems by combining models with field and remotely sensed data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号