首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27940篇
  免费   15688篇
  国内免费   3篇
  2023年   30篇
  2022年   115篇
  2021年   443篇
  2020年   2220篇
  2019年   3756篇
  2018年   3869篇
  2017年   4137篇
  2016年   4160篇
  2015年   4088篇
  2014年   3749篇
  2013年   4213篇
  2012年   1880篇
  2011年   1619篇
  2010年   3129篇
  2009年   1879篇
  2008年   789篇
  2007年   365篇
  2006年   336篇
  2005年   374篇
  2004年   359篇
  2003年   353篇
  2002年   335篇
  2001年   321篇
  2000年   260篇
  1999年   185篇
  1998年   47篇
  1997年   28篇
  1996年   30篇
  1995年   25篇
  1994年   23篇
  1993年   27篇
  1992年   51篇
  1991年   31篇
  1990年   31篇
  1989年   42篇
  1988年   40篇
  1987年   19篇
  1986年   35篇
  1985年   21篇
  1984年   13篇
  1983年   18篇
  1982年   16篇
  1981年   15篇
  1980年   11篇
  1979年   19篇
  1978年   12篇
  1977年   15篇
  1974年   17篇
  1973年   12篇
  1969年   8篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
211.
The aim of this study was to explore differences in dietary specialization across two foraging modes (benthic v. surface‐drift foraging) of stream‐dwelling brown trout Salmo trutta. The degree of inter‐individual niche variation within each foraging mode was high, but the dietary specialization was maintained between foraging modes. This study supports the view that if aquatic invertebrates are more abundant and accessible than surface prey, the individuals will not specialize on surface prey (surface‐drift foraging).  相似文献   
212.
Fungal infections are a pressing concern for human health worldwide, particularly for immunocompromised individuals. Current challenges such as the elevated toxicity of common antifungal drugs and the emerging resistance towards these could be overcome by multidrug therapy. Natural antimicrobial peptides, AMPs, in combination with other antifungal agents are a promising avenue to address the prevailing challenges. However, they possess limited biostability and susceptibility to proteases, which has significantly hampered their development as antifungal therapies. β‐peptides are synthetic materials designed to mimic AMPs while allowing high tunability and increased biostability. In this work, we report for the first time the inhibition achieved in Candida albicans when treated with a mixture of a β‐peptide model and fluconazole or ketoconazole. This combination treatment enhanced the biological activity of these azoles in planktonic and biofilm Candida, and also in a fluconazole‐resistant strain. Furthermore, the in vitro cytotoxicity of the dual treatment was evaluated towards the human hepatoma cell line, HepG2, a widely used model derived from liver tissue, which is primarily affected by azoles. Analyses based on the LA‐based method and the mass‐action law principle, using a microtiter checkerboard approach, revealed synergism of the combination treatment in the inhibition of planktonic C. albicans. The dual treatment proved to be fungicidal at 48 and 72 h. Interestingly, it was also found that the viability of HepG2 was not significantly affected by the dual treatments. Finally, a remarkable enhancement in the inhibition of the highly azole‐resistant biofilms and fluconazole resistant C. albicans strain was obtained. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
213.
TMEFF2 is a type I transmembrane protein with two follistatin (FS) and one EGF‐like domain over‐expressed in prostate cancer; however its biological role in prostate cancer development and progression remains unclear, which may, at least in part, be explained by its proteolytic processing. The extracellular part of TMEFF2 (TMEFF2‐ECD) is cleaved by ADAM17 and the membrane‐retained fragment is further processed by the gamma‐secretase complex. TMEFF2 shedding is increased with cell crowding, a condition associated with the tumour microenvironment, which was mediated by oxidative stress signalling, requiring jun‐kinase (JNK) activation. Moreover, we have identified that TMEFF2 is also a novel substrate for other proteases implicated in prostate cancer, including two ADAMs (ADAM9 and ADAM12) and the type II transmembrane serine proteinases (TTSPs) matriptase‐1 and hepsin. Whereas cleavage by ADAM9 and ADAM12 generates previously identified TMEFF2‐ECD, proteolytic processing by matriptase‐1 and hepsin produced TMEFF2 fragments, composed of TMEFF2‐ECD or FS and/or EGF‐like domains as well as novel membrane retained fragments. Differential TMEFF2 processing from a single transmembrane protein may be a general mechanism to modulate transmembrane protein levels and domains, dependent on the repertoire of ADAMs or TTSPs expressed by the target cell.  相似文献   
214.
215.
Histamine was immobilized on Sepharose CL‐6B (Sepharose) for use as a ligand of hydrophobic charge induction chromatography (HCIC) of proteins. Lysozyme adsorption onto Histamine‐Sepharose (HA‐S) was studied by adsorption equilibrium and calorimetry to uncover the thermodynamic mechanism of the protein binding. In both the experiments, the influence of salt (ammonium sulfate and sodium sulfate) was examined. Adsorption isotherms showed that HA‐S exhibited a high salt tolerance in lysozyme adsorption. This property was well explained by the combined contributions of hydrophobic interaction and aromatic stacking. The isotherms were well fitted to the Langmuir equation, and the equilibrium parameters for lysozyme adsorption were obtained. In addition, thermodynamic parameters (ΔHads, ΔSads, and ΔGads) for the adsorption were obtained by isothermal titration calorimetry by titrating lysozyme solutions into the adsorbent suspension. Furthermore, free histamine was titrated into lysozyme solution in the same salt‐buffers. Compared with the binding of lysozyme to free histamine, lysozyme adsorption onto HA‐S was characterized by a less favorable ΔGads and an unfavorable ΔSads because histamine was covalently attached to Sepharose via a three‐carbon‐chain spacer. Consequently, the immobilized histamine could only associate with the residues on the protein surface rather than those in the hydrophobic pocket, causing a less favorable orientation between histamine and lysozyme. Further comparison of thermodynamic parameters indicated that the unfavorable ΔSads was offset by a favorable ΔHads, thus exhibiting typical enthalpy‐entropy compensation. Moreover, thermodynamic analyses indicated the importance of the dehydration of lysozyme molecule and HA‐S during the adsorption and a substantial conformational change of the protein during adsorption. The results have provided clear insights into the adsorption mechanisms of lysozyme onto the new HCIC material. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   
216.
Sweet sorghum (Sorghum bicolor (L.) Moench) is widely recognized as a highly promising biomass energy crop with particular potential to complement sugarcane production in diversified cropping systems. Agronomic assessments have led to identification of four cultivars well suited for such sugarcane‐based production systems in southern Louisiana. Sweet sorghum biofuel production systems are currently being developed, and research producing large sample numbers requiring ethanol yield assessment is anticipated. Fiber analysis approaches developed for forage evaluation appear to be useful for screening such large numbers of samples for relative ethanol yield. Chemical composition, forage fiber characteristics, digestibility, and ethanol production of sweet sorghum bagasse from the four cultivars were assessed. Measures of detergent fiber, lignin, and digestibility were highly correlated with ethanol production (P < 0.01). The best linear regression models accounted for about 80% of the variation among cultivars in ethanol production. Bagasse from the cultivar Dale produced more ethanol per gram of material than any of the other cultivars. This superior ethanol production was apparently associated with less lignin in stems of Dale. Forage evaluation measures including detergent fiber analyses, in vitro digestibility, and an in vitro gas production technique successfully identified the cultivar superior in ethanol yield indicating their usefulness for screening sweet sorghum samples for potential ethanol production in research programs generating large sample numbers from evaluations of germ plasm or agronomic treatments. These screening procedures reduce time and expense of alternatives such as hexose sugar assessment for calculating theoretical ethanol yield.  相似文献   
217.
In yeast, the presence of orthodox aquaporins has been first recognized in Saccharomyces cerevisiae, in which two genes (AQY1 and AQY2) were shown to be related to mammal and plant water channels. The present review summarizes the putative orthodox aquaporin protein sequences found in available genomes of yeast and filamentous fungi. Among the 28 yeast genomes sequenced, most species present only one orthodox aquaporin, and no aquaporins were found in eight yeast species. Alignment of amino acid sequences reveals a very diverse group. Similarity values vary from 99% among species within the Saccharomyces genus to 34% between ScAqy1 and the aquaporin from Debaryomyces hansenii. All of the fungal aquaporins possess the known characteristic sequences, and residues involved in the water channel pore are highly conserved. Advances in the establishment of the structure are reviewed in relation to the mechanisms of selectivity, conductance and gating. In particular, the involvement of the protein cytosolic N‐terminus as a channel blocker preventing water flow is addressed. Methodologies used in the evaluation of aquaporin activity frequently involve the measurement of fast volume changes. Particular attention is paid to data analysis to obtain accurate membrane water permeability parameters. Although the presence of aquaporins clearly enhances membrane water permeability, the relevance of these ubiquitous water channels in yeast performance remains obscure.  相似文献   
218.
Efficient polysaccharide degradation depends on interaction between enzymes acting on the main chain and the side chains. Previous studies demonstrated cooperation between several enzymes, but not all enzyme combinations have been explored. A better understanding of enzyme cooperation would enable the design of better enzyme mixtures, optimally profiting from synergistic effects. In this study, we analyzed the cooperation of several enzymes involved in the degradation of xylan, glucan, xyloglucan and crude plant biomass from Aspergillus nidulans by single and combined incubations with their polymeric substrate. Positive effects were observed between most enzymes, although not always to the same extent. Moreover, the tailor made cocktails formulated in this study resulted in efficient release of glucose from plant biomass. This study also serves as an example for the complex cooperation that occurs between enzymes in plant biomass saccharification and how expression in easily‐accessible hosts, such as Pichia pastoris, can help in revealing these effects.  相似文献   
219.
Excessive proteolysis of fibronectin (FN) impairs tissue repair in chronic wounds. Since FN is essential in wound healing, our goal is to improve its proteolytic stability and at the same time preserve its biological activity. We have previously shown that reduced FN conjugated with polyethylene glycol (PEG) at cysteine residues is more proteolytically stable than native FN. Cysteine‐PEGylated FN supported cell adhesion and migration to the same extent as native FN. However, unlike native FN, cysteine‐PEGylated FN was not assembled into an extracellular matrix (ECM) when immobilized. Here, we present an alternative approach in which FN is preferentially PEGylated at lysine residues using different molecular weight PEGs. We show that lysine PEGylation does not perturb FN secondary structure. PEG molecular weight, from 2 to 10 kDa, positively correlates with FN–PEG proteolytic stability. Cell adhesion, cell spreading, and gelatin binding decrease with increasing molecular weight of PEG. The 2‐kDa FN–PEG conjugate shows comparable cell adhesion to native FN and binds gelatin. Moreover, immobilized FN–PEG is assembled into ECM fibrils. In summary, lysine PEGylation of FN can be used to stabilize FN against proteolytic degradation with minimal perturbation to FN structure and retained biological activity.  相似文献   
220.
How has evolution led to the variation in behavioural phenotypes (personalities) in a population? Knowledge of whether personality is heritable, and to what degree it is influenced by the social environment, is crucial to understanding its evolutionary significance, yet few estimates are available from natural populations. We tracked three behavioural traits during different life‐history stages in a pedigreed population of wild house sparrows. Using a quantitative genetic approach, we demonstrated heritability in adult exploration, and in nestling activity after accounting for fixed effects, but not in adult boldness. We did not detect maternal effects on any traits, but we did detect a social brood effect on nestling activity. Boldness, exploration and nestling activity in this population did not form a behavioural syndrome, suggesting that selection could act independently on these behavioural traits in this species, although we found no consistent support for phenotypic selection on these traits. Our work shows that repeatable behaviours can vary in their heritability and that social context influences personality traits. Future efforts could separate whether personality traits differ in heritability because they have served specific functional roles in the evolution of the phenotype or because our concept of personality and the stability of behaviour needs to be revised.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号