首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147篇
  免费   17篇
  2023年   1篇
  2022年   3篇
  2021年   7篇
  2020年   2篇
  2019年   1篇
  2018年   6篇
  2017年   3篇
  2016年   6篇
  2015年   7篇
  2014年   13篇
  2013年   7篇
  2012年   16篇
  2011年   17篇
  2010年   8篇
  2009年   4篇
  2008年   9篇
  2007年   10篇
  2006年   4篇
  2005年   12篇
  2004年   4篇
  2003年   5篇
  2002年   5篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1991年   1篇
  1990年   1篇
  1979年   1篇
排序方式: 共有164条查询结果,搜索用时 31 毫秒
11.
12.
Aggregata octopiana (Apicomplexa, Aggregatidae) is the most prevalent coccidian in the wild common octopus (Octopus vulgaris), whose heteroxenous life cycle includes gamogony and sporogony undergoing in the octopus digestive tract. In the infected reared octopi, we observed an unusual extraintestinal distribution of the coccidian, with both gamogony and sporogony ongoing in dermal and gill tissue. Oocysts and macrogamonts were embedded in the dermal connective tissue of octopian arms, demarcated by a thin cyst wall or multilayered dark membrane. In gill connective and epithelial tissue all developmental stages were observed, eliciting hemocytic infiltration. Sometimes a complete substitution of the tissue by cysts and developmental stages occurred, resulting in necrosis of gill tissue.  相似文献   
13.
More than two decades of genetic research have identified and assigned main biological functions of shelterin proteins that safeguard telomeres. However, a molecular mechanism of how each protein subunit contributes to the protecting function of the whole shelterin complex remains elusive. Human Repressor activator protein 1 (Rap1) forms a multifunctional complex with Telomeric Repeat binding Factor 2 (TRF2). Rap1–TRF2 complex is a critical part of shelterin as it suppresses homology-directed repair in Ku 70/80 heterodimer absence. To understand how Rap1 affects key functions of TRF2, we investigated full-length Rap1 binding to TRF2 and Rap1–TRF2 complex interactions with double-stranded DNA by quantitative biochemical approaches. We observed that Rap1 reduces the overall DNA duplex binding affinity of TRF2 but increases the selectivity of TRF2 to telomeric DNA. Additionally, we observed that Rap1 induces a partial release of TRF2 from DNA duplex. The improved TRF2 selectivity to telomeric DNA is caused by less pronounced electrostatic attractions between TRF2 and DNA in Rap1 presence. Thus, Rap1 prompts more accurate and selective TRF2 recognition of telomeric DNA and TRF2 localization on single/double-strand DNA junctions. These quantitative functional studies contribute to the understanding of the selective recognition of telomeric DNA by the whole shelterin complex.  相似文献   
14.
Understanding the mechanism of infection control in elite controllers (EC) may shed light on the correlates of control of disease progression in HIV infection. However, limitations have prevented a clear understanding of the mechanisms of elite controlled infection, as these studies can only be performed at randomly selected late time points in infection, after control is achieved, and the access to tissues is limited. We report that SIVagm infection is elite-controlled in rhesus macaques (RMs) and therefore can be used as an animal model for EC HIV infection. A robust acute infection, with high levels of viral replication and dramatic mucosal CD4(+) T cell depletion, similar to pathogenic HIV-1/SIV infections of humans and RMs, was followed by complete and durable control of SIVagm replication, defined as: undetectable VLs in blood and tissues beginning 72 to 90 days postinoculation (pi) and continuing at least 4 years; seroreversion; progressive recovery of mucosal CD4(+) T cells, with complete recovery by 4 years pi; normal levels of T cell immune activation, proliferation, and apoptosis; and no disease progression. This "functional cure" of SIVagm infection in RMs could be reverted after 4 years of control of infection by depleting CD8 cells, which resulted in transient rebounds of VLs, thus suggesting that control may be at least in part immune mediated. Viral control was independent of MHC, partial APOBEC restriction was not involved in SIVagm control in RMs and Trim5 genotypes did not impact viral replication. This new animal model of EC lentiviral infection, in which complete control can be predicted in all cases, permits research on the early events of infection in blood and tissues, before the defining characteristics of EC are evident and when host factors are actively driving the infection towards the EC status.  相似文献   
15.
The simultaneous presence of Down syndrome and achondroplasia has rarely been reported in the literature, and our search revealed only six patients with such an association. We are reporting the first case of a patient with Down syndrome and hypochondroplasia. In this patient, Down syndrome was clinically recognised and confirmed by the cytogenetic finding of mosaic karyotype (47,XX,+21/46,XX) shortly after birth. She was subsequently diagnosed with hypochondroplasia at the age of 6 years when disproportional short stature, stocky habitus and macrocephaly were observed. These phenotypic findings were later confirmed by the presence of fibroblast growth factor receptor 3 (FGFR3) gene mutation N540K. The overlapping common clinical features of Down syndrome and hypochondroplasia resulted in delayed diagnosis of hypochondroplasia in our patient and the associated deleterious effect on her linear growth. Her final height is 126.5 cm, which is −3.76 standard deviations (SD) lower than the median height in patients with Down syndrome, and is under the lower borderline of the adult height range for women with hypochondroplasia.  相似文献   
16.
Retrospective molecular epidemiology was performed on samples from four sooty mangabey (SM) colonies in the United States to characterize simian immunodeficiency virus SIVsm diversity in SMs and to trace virus circulation among different primate centers (PCs) over the past 30 years. The following SIVsm sequences were collected from different monkeys: 55 SIVsm isolates from the Tulane PC sampled between 1984 and 2004, 10 SIVsm isolates from the Yerkes PC sampled in 2002, 7 SIVsm isolates from the New Iberia PC sampled between 1979 and 1986, and 8 SIVsm isolates from the California PC sampled between 1975 and 1977. PCR and sequencing were done to characterize the gag, pol, and env gp36 genes. Phylogenetic analyses were correlated with the epidemiological data. Our analysis identified nine different divergent phylogenetic lineages that cocirculated in these four SM colonies in the Unites States in the past 30 years. Lineages 1 to 5 have been identified previously. Two of the newly identified SIVsm lineages found in SMs are ancestral to SIVmac251/SIVmac239/SIVmne and SIVstm. We further identified the origin of these two macaque viruses in SMs from the California National Primate Research Center. The diversity of SIVsm isolates in PCs in the United States mirrors that of human immunodeficiency virus type 1 (HIV-1) group M subtypes and offers a model for the molecular epidemiology of HIV and a new approach to vaccine testing. The cocirculation of divergent SIVsm strains in PCs resulted in founder effects, superinfections, and recombinations. This large array of SIVsm strains showing the same magnitude of diversity as HIV-1 group M subtypes should be extremely useful for modeling the efficacy of vaccination strategies under the real-world conditions of HIV-1 diversity. The genetic variability of SIVsm strains among PCs may influence the diagnosis and monitoring of SIVsm infection and, consequently, may bias the results of pathogenesis studies.  相似文献   
17.
A unique opportunity for the study of the role of serial passage and cross-species transmission was offered by a series of experiments carried out at the Tulane National Primate Research Center in 1990. To develop an animal model for leprosy, three black mangabeys (BkMs) (Lophocebus aterrimus) were inoculated with lepromatous tissue that had been serially passaged in four sooty mangabeys (SMs) (Cercocebus atys). All three BkMs became infected with simian immunodeficiency virus from SMs (SIVsm) by day 30 postinoculation (p.i.) with lepromatous tissue. One (BkMG140) died 2 years p.i. from causes unrelated to SIV, one (BkMG139) survived for 10 years, whereas the third (BkMG138) was euthanized with AIDS after 5 years. Histopathology revealed a high number of giant cells in tissues from BkMG138, but no SIV-related lesions were found in the remaining two BkMs. Four-color immunofluorescence revealed high levels of SIVsm associated with both giant cells and T lymphocytes in BkMG138 and no detectable SIV in the remaining two. Serum viral load (VL) showed a significant increase (>1 log) during the late stage of the disease in BkMG138, as opposed to a continuous decline in VL in the remaining two BkMs. With the progression to AIDS, neopterin levels increased in BkMG138. This study took on new significance when phylogenetic analysis unexpectedly showed that all four serially inoculated SMs were infected with different SIVsm lineages prior to the beginning of the experiment. Furthermore, the strain infecting the BkMs originated from the last SM in the series. Therefore, the virus infecting BkMs has not been serially passaged. In conclusion, we present the first compelling evidence that direct cross-species transmission of SIV may induce AIDS in heterologous African nonhuman primate (NHP) species. The results showed that cross-species-transmitted SIVsm was well controlled in two of three BkMs for 2 and 10 years, respectively. Finally, this case of AIDS in an African monkey suggests that the dogma of SIV nonpathogenicity in African NHP hosts should be reconsidered.  相似文献   
18.
19.
According to a long-standing hypothesis, aging is mainly caused by accumulation of nuclear (n) DNA damage in differentiated cells such as neurons due to insufficient nDNA repair during lifetime. In line with this hypothesis it was until recently widely accepted that neuron loss is a general consequence of normal aging, explaining some degree of decline in brain function during aging. However, with the advent of more accurate procedures for counting neurons, it is currently widely accepted that there is widespread preservation of neuron numbers in the aging brain, and the changes that do occur are relatively specific to certain brain regions and types of neurons. Whether accumulation of nDNA damage and decline in nDNA repair is a general phenomenon in the aging brain or also shows cell-type specificity is, however, not known. It has not been possible to address this issue with the biochemical and molecular-biological methods available to study nDNA damage and nDNA repair. Rather, it was the introduction of autoradiographic methods to study quantitatively the relative amounts of nDNA damage (measured as nDNA single-strand breaks) and nDNA repair (measured as unscheduled DNA synthesis) on tissue sections that made it possible to address this question in a cell-type-specific manner under physiological conditions. The results of these studies revealed a formerly unknown inverse relationship between age-related accumulation of nDNA damage and age-related impairment in nDNA repair on the one hand, and the age-related, selective, loss of neurons on the other hand. This inverse relation may not only reflect a fundamental process of aging in the central nervous system but also provide the molecular basis for a new approach to understand the selective neuronal vulnerability in neurodegenerative diseases, particularly Alzheimer's disease.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号