首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1684篇
  免费   143篇
  1827篇
  2023年   7篇
  2022年   20篇
  2021年   30篇
  2020年   19篇
  2019年   17篇
  2018年   30篇
  2017年   20篇
  2016年   50篇
  2015年   82篇
  2014年   95篇
  2013年   103篇
  2012年   144篇
  2011年   144篇
  2010年   85篇
  2009年   74篇
  2008年   124篇
  2007年   107篇
  2006年   108篇
  2005年   107篇
  2004年   61篇
  2003年   91篇
  2002年   59篇
  2001年   30篇
  2000年   23篇
  1999年   18篇
  1998年   13篇
  1997年   8篇
  1996年   11篇
  1995年   9篇
  1994年   11篇
  1993年   5篇
  1992年   11篇
  1991年   7篇
  1990年   8篇
  1989年   3篇
  1988年   7篇
  1987年   10篇
  1986年   6篇
  1985年   7篇
  1984年   4篇
  1983年   6篇
  1982年   3篇
  1981年   4篇
  1979年   4篇
  1978年   4篇
  1977年   4篇
  1976年   3篇
  1970年   4篇
  1967年   4篇
  1961年   5篇
排序方式: 共有1827条查询结果,搜索用时 15 毫秒
191.
The proteins P52 and P36 are expressed in the sporozoite stage of the murine malaria parasite Plasmodium berghei. Δp52&p36 sporozoites lacking expression of both proteins are severely compromised in their capability to develop into liver stage parasites and abort development soon after invasion; presumably due to the absence of a parasitophorous vacuole membrane (PVM). However, a small proportion of P. berghei Δp52&p36 parasites is capable to fully mature in hepatocytes causing breakthrough blood stage infections. We have studied the maturation of replicating Δp52&p36 parasites in cultured Huh-7 hepatocytes. Approximately 50% of Δp52&p36 parasites developed inside the nucleus of the hepatocyte but did not complete maturation and failed to produce merosomes. In contrast cytosolic Δp52&p36 parasites were able to fully mature and produced infectious merozoites. These Δp52&p36 parasites developed into mature schizonts in the absence of an apparent parasitophorous vacuole membrane as shown by immunofluorescence and electron microscopy. Merozoites derived from these maturing Δp52&p36 liver stages were infectious for C57BL/6 mice.  相似文献   
192.
The genomes of filamentous fungi comprise numerous putative gene clusters coding for the biosynthesis of chemically and structurally diverse secondary metabolites (SMs), which are rarely expressed under laboratory conditions. Previous approaches to activate these genes were based primarily on artificially targeting the cellular protein synthesis apparatus. Here, we applied an alternative approach of genetically impairing the protein degradation apparatus of the model fungus Aspergillus nidulans by deleting the conserved eukaryotic csnE/CSN5 deneddylase subunit of the COP9 signalosome. This defect in protein degradation results in the activation of a previously silenced gene cluster comprising a polyketide synthase gene producing the antibiotic 2,4-dihydroxy-3-methyl-6-(2-oxopropyl)benzaldehyde (DHMBA). The csnE/CSN5 gene is highly conserved in fungi, and therefore, the deletion is a feasible approach for the identification of new SMs.  相似文献   
193.
The use of phosphate-solubilizing fungi is a promising biotechnological strategy in the management of phosphorus (P) fertilization, as it enables the utilization of rock phosphates (RP) or the recovery of P fixed in soil particles. The objective of our study was to evaluate fungal isolates for mechanisms of solubilization of P-bearing compounds, such as AlPO4, FePO4, Ca3(PO4)2, Araxá RP, and Catalão RP. Four fungal isolates obtained from Brazilian soils were characterized in liquid media: Aspergillus niger FS1, Penicillium canescens FS23, Eupenicillium ludwigii FS27, and Penicillium islandicum FS30. A. niger FS1 was the only isolate able to solubilize all of the P sources, solubilizing 71, 36, 100, and 14 % of the P from AlPO4, FePO4, Ca3(PO4)2, and RPs, respectively. Medium acidification was an effective solubilization mechanism, particularly for Ca3(PO4)2. The other P sources were mainly solubilized through organic acids produced by the fungi. Oxalic acid, produced exclusively by A. niger FS1, and citric acid were decisive factors in the solubilization of AlPO4 and FePO4. Penicillium isolates produced more gluconic acid than A. niger FS1 in all treatments. However, this higher production did not result in higher solubilization for any of the P sources, showing that gluconic acid contributes little to the solubilization of the P sources evaluated. The higher capacity of medium acidification and the production of organic acids with stronger metal-complexation activity are characteristics that confer to A. niger FS1 a wider action on insoluble P sources. Consequently, this isolate qualifies as a promising candidate for application in the management of P fertilization.  相似文献   
194.
The proliferation of neutrophil granulocyte lineage is driven largely by granulocyte colony-stimulating factor (G-CSF) acting via the G-CSF receptors. In this study, we show that mice lacking cyclin D3, a component of the core cell cycle machinery, are refractory to stimulation by the G-CSF. Consequently, cyclin D3-null mice display deficient maturation of granulocytes in the bone marrow and have reduced levels of neutrophil granulocytes in their peripheral blood. The mutant mice are unable to mount a normal response to bacterial challenge and succumb to microbial infections. In contrast, the expansion of hematopoietic stem cells and lineage-committed myeloid progenitors proceeds relatively normally in mice lacking cyclin D3, revealing that the requirement for cyclin D3 function operates at later stages of neutrophil development. Importantly, we verified that this requirement is specific to cyclin D3, as mice lacking other G(1) cyclins (D1, D2, E1, or E2) display normal granulocyte counts. Our analyses revealed that in the bone marrow cells of wild-type mice, activation of the G-CSF receptor leads to upregulation of cyclin D3. Collectively, these results demonstrate that cyclin D3 is an essential cell cycle recipient of G-CSF signaling, and they provide a molecular link of how G-CSF-dependent signaling triggers cell proliferation.  相似文献   
195.
In this work, we have investigated the role of the individual antenna complexes and of the low-energy forms in excitation energy transfer and trapping in Photosystem I of higher plants. To this aim, a series of Photosystem I (sub)complexes with different antenna size/composition/absorption have been studied by picosecond fluorescence spectroscopy. The data show that Lhca3 and Lhca4, which harbor the most red forms, have similar emission spectra (λmax = 715–720 nm) and transfer excitation energy to the core with a relative slow rate of ∼25/ns. Differently, the energy transfer from Lhca1 and Lhca2, the “blue” antenna complexes, occurs about four times faster. In contrast to what is often assumed, it is shown that energy transfer from the Lhca1/4 and the Lhca2/3 dimer to the core occurs on a faster timescale than energy equilibration within these dimers. Furthermore, it is shown that all four monomers contribute almost equally to the transfer to the core and that the red forms slow down the overall trapping rate by about two times. Combining all the data allows the construction of a comprehensive picture of the excitation-energy transfer routes and rates in Photosystem I.  相似文献   
196.
Signaling from the activin/transforming growth factor beta (TGFbeta) family of cytokines is a tightly regulated process. Disregulation of TGFbeta signaling is often the underlying basis for various cancers, tumor metastasis, inflammatory and autoimmune diseases. In this study, we identify the protein G-coupled receptor kinase 2 (GRK2), a kinase involved in the desensitization of G protein-coupled receptors (GPCR), as a downstream target and regulator of the TGFbeta-signaling cascade. TGFbeta-induced expression of GRK2 acts in a negative feedback loop to control TGFbeta biological responses. Upon TGFbeta stimulation, GRK2 associates with the receptor-regulated Smads (R-Smads) through their MH1 and MH2 domains and phosphorylates their linker region. GRK2 phosphorylation of the R-Smads inhibits their carboxyl-terminal, activating phosphorylation by the type I receptor kinase, thus preventing nuclear translocation of the Smad complex, leading to the inhibition of TGFbeta-mediated target gene expression, cell growth inhibition and apoptosis. Furthermore, we demonstrate that GRK2 antagonizes TGFbeta-induced target gene expression and apoptosis ex vivo in primary hepatocytes, establishing a new role for GRK2 in modulating single-transmembrane serine/threonine kinase receptor-mediated signal transduction.  相似文献   
197.
Leptospira interrogans is a pathogenic spirochete responsible for leptospirosis, a neglected, zoonotic reemerging disease. Humans are sensitive hosts and may develop severe disease. Some animal species, such as rats and mice can become asymptomatic renal carriers. More than 350 leptospiral serovars have been identified, classified on the basis of the antibody response directed against the lipopolysaccharide (LPS). Similarly to whole inactivated bacteria used as human vaccines, this response is believed to confer only short-term, serogroup-specific protection. The immune response of hosts against leptospires has not been thoroughly studied, which complicates the testing of vaccine candidates. In this work, we studied the immunoglobulin (Ig) profiles in mice infected with L. interrogans over time to determine whether this humoral response confers long-term protection after homologous challenge six months post-infection. Groups of mice were injected intraperitoneally with 2×107 leptospires of one of three pathogenic serovars (Manilae, Copenhageni or Icterohaemorrhagiae), attenuated mutants or heat-killed bacteria. Leptospira-specific immunoglobulin (IgA, IgM, IgG and 4 subclasses) produced in the first weeks up to 6 months post-infection were measured by ELISA. Strikingly, we found sustained high levels of IgM in mice infected with the pathogenic Manilae and Copenhageni strains, both colonizing the kidney. In contrast, the Icterohaemorrhagiae strain did not lead to kidney colonization, even at high dose, and triggered a classical IgM response that peaked at day 8 post-infection and disappeared. The virulent Manilae and Copenhageni serovars elicited high levels and similar profiles of IgG subclasses in contrast to Icterohaemorrhagiae strains that stimulated weaker antibody responses. Inactivated heat-killed Manilae strains elicited very low responses. However, all mice pre-injected with leptospires challenged with high doses of homologous bacteria did not develop acute leptospirosis, and all antibody responses were boosted after challenge. Furthermore, we showed that 2 months post-challenge, mice pre-infected with the attenuated M895 Manilae LPS mutant or heat-killed bacterin were completely protected against renal colonization. In conclusion, we observed a sustained IgM response potentially associated with chronic leptospiral renal infection. We also demonstrated in mice different profiles of protective and cross-reactive antibodies after L. interrogans infection, depending on the serovar and virulence of strains.  相似文献   
198.
N-Acylethanolamines (NAEs) are fatty-acid derivatives with potent biological activities in a wide range of eukaryotic organisms. Polyunsaturated NAEs are among the most abundant NAE types in seeds of Arabidopsis thaliana, and they can be metabolized by either fatty acid amide hydrolase (FAAH) or by lipoxygenase (LOX) to low levels during seedling establishment. Here, we identify and quantify endogenous oxylipin metabolites of N-linolenoylethanolamine (NAE 18:3) in Arabidopsis seedlings and show that their levels were higher in faah knockout seedlings. Quantification of oxylipin metabolites in lox mutants demonstrated altered partitioning of NAE 18:3 into 9- or 13-LOX pathways, and this was especially exaggerated when exogenous NAE was added to seedlings. When maintained at micromolar concentrations, NAE 18:3 specifically induced cotyledon bleaching of light-grown seedlings within a restricted stage of development. Comprehensive oxylipin profiling together with genetic and pharmacological interference with LOX activity suggested that both 9-hydroxy and 13-hydroxy linolenoylethanolamides, but not corresponding free fatty-acid metabolites, contributed to the reversible disruption of thylakoid membranes in chloroplasts of seedling cotyledons. We suggest that NAE oxylipins of linolenic acid represent a newly identified, endogenous set of bioactive compounds that may act in opposition to progression of normal seedling development and must be depleted for successful establishment.  相似文献   
199.
The detection of West Nile virus (WNV) nucleic acid in a blood donation from Vienna, Austria, as well as in Culex pipiens pupae and egg rafts, sampled close to the donor’s residence, is reported. Complete genomic sequences of the human- and mosquito-derived viruses were established, genetically compared and phylogenetically analyzed. The viruses were not identical, but closely related to each other and to recent Czech and Italian isolates, indicating co-circulation of related WNV strains within a confined geographic area. The detection of WNV in a blood donation originating from an area with low WNV prevalence in humans (only three serologically diagnosed cases between 2008 and 2014) is surprising and emphasizes the importance of WNV nucleic acid testing of blood donations even in such areas, along with active mosquito surveillance programs.  相似文献   
200.
Two flight parameters (take-off and duration) and respiration level were measured, in two years in summer and early autumn, in dormant Coccinella septempunctata L. (Coleoptera: Coccinellidae) collected while hidden in grass tussocks in hibernation sites (HID) and in beetles collected on plants (PLA). The duration of tethered flight of HID beetles measured in the laboratory in late August and September 1995 (range of geometric means 190–440 s) was slightly longer than the flight of PLA beetles (80–310 s), both being much longer than trivial flight recorded in beetles foraging for prey during the breeding season (35 s). In general, the flight performance had a tendency to increase in September and to decrease in October.The oxygen consumption in HID beetles increased throughout September 1994 from 430 to 780 l g–1 h–1 and throughout October 1995 from 710 to 1060 l g–1 h–1. This increase is ascribed to a concomitant decrease in diapause intensity. A similar increase was observed also in PLA beetles in 1994 and oxygen consumption was always higher than in HID beetles, most probably due to feeding and digestion in PLA beetles.Laboratory feeding of HID beetles on aphids induced maturation of ovaries and increased oxygen uptake (from 680 to 1110 l g–1 h–1). Feeding on honey and pollen left their oxygen uptake unchanged. Effect of feeding on the flight parameters was mostly not significant. In agreement with its less suitable body shape and usually less distant dormancy sites, C. septempunctata was found a less apt flier than long-distance migrating coccinellid species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号