首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   504篇
  免费   48篇
  2022年   4篇
  2021年   10篇
  2020年   8篇
  2019年   7篇
  2018年   8篇
  2017年   15篇
  2016年   17篇
  2015年   21篇
  2014年   14篇
  2013年   39篇
  2012年   41篇
  2011年   28篇
  2010年   31篇
  2009年   24篇
  2008年   38篇
  2007年   34篇
  2006年   39篇
  2005年   31篇
  2004年   30篇
  2003年   29篇
  2002年   27篇
  2001年   4篇
  2000年   7篇
  1999年   3篇
  1998年   13篇
  1997年   2篇
  1996年   6篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1990年   2篇
  1985年   1篇
  1984年   1篇
  1982年   4篇
  1981年   1篇
  1977年   3篇
  1975年   2篇
  1974年   1篇
排序方式: 共有552条查询结果,搜索用时 31 毫秒
81.
Previous histological studies showed that in addition to a sinus node, an atrioventricular (AV) node, an AV bundle, left and right bundle branches, birds also possess a right AV‐Purkinje ring that is located in the atrial sheet of the right muscular AV‐valve along all its base length. The functionality of the AV‐Purkinje ring is unknown. In this work, we studied the topology of pacemaker myocytes in the atrial side of the isolated chicken spontaneously contracting right muscular AV‐valve using the method of microelectrode mapping of action potentials. We show that AV‐cells having the ability to show pacemaking reside in the right muscular AV‐valve. Pacemaker action potentials were exclusively recorded close to the base of the valve along its whole length from dorsal to the ventral attachment to the interventricular septum. These action potentials have much slower rate of depolarization, lower amplitude, and higher diastolic depolarization than action potentials of Purkinje (conducting) cells. We conclude the right AV‐valve has a ring bundle of pacemaker cells (but not Purkinje cells) in the adult chicken heart. J. Morphol. 277:363–369, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   
82.
The activity of microorganisms is a decisive factor in the transformation of the essential and, at the same time, toxic selenium (Se) in marine waters. This review provides an analysis of the literature data on the microbiological regulation of the state of Se in marine waters: the role of microorganisms in eliminating toxic Se from marine waters through precipitation of reduced Se forms and in the reverse process, transformation of Se into a form available to be taken up by organisms and involvement of this element in the biogeochemical cycle. The processes of transformation of the oxidized and reduced Se forms with the participation of microorganisms in marine waters are considered. It has been shown that in anaerobic conditions bacteria use the oxidized Se forms as electron acceptors (reduction). Bioavailable selenite and selenate ions are formed in the case of aerobic oxidation. Biotransformation of dissolved Se is a key mechanism for the formation of methylated gaseous Se forms in marine waters as one of the ways to remove this element from the aquatic environment.  相似文献   
83.
Toxoplasmosis, a most common zoonosis, is caused by the protozoan parasite Toxoplasma gondii. However, there is little epidemiological information on T. gondii infections in humans and livestock animals in Russia. Therefore, in this study, the seroprevalence of T. gondii in goats in Russia was investigated. A total of 216 goats from 32 farms were investigated and 95 of them were seropositive for T. gondii. The difference in seroprevalence between the examined regions was not statistically significant. We next collected serum samples from 99 cats and 181 humans in Kazan city, the state capital of the Republic of Tatarstan, Russia, and examined their T. gondii seroprevalences. Thirty-nine of the 99 cat samples and 56 of the 181 human samples showed seropositivity. Logistical regression analysis revealed that the cat breeding history of the human subjects, but not their sex or age is a significant risk factor for T. gondii seropositivity. These findings suggest that the natural environment in Russia may be widely polluted with T. gondii oocysts shed by cats, and ingestion of these oocysts provides a major route for human infection with this parasite.  相似文献   
84.
85.
The novel isosteric ribavirin analogues were synthesized by two different ways. Some of them showed significant antiviral action against hepatitis C virus (HCV), herpes simplex (HCV-1) and influenza A virus comparable to that of ribavirin itself. The data obtained confirm the proposed theory of the ribavirin possible antiviral activity mechanism related with bioisosterism.  相似文献   
86.
Human serum albumin is playing an increasing role as a drug carrier in clinical settings. Biotin molecules are often used as suitable tags in targeted anti-tumor drug delivery systems. We report on the synthesis and properties of a new multimodal theranostic conjugate based on an anti-cancer fluorinated nucleotide conjugated with a biotinylated dual-labeled albumin. Interestingly, in vitro and in vivo study revealed stronger anti-tumor activity of the non-tagged theranostic conjugate than that of the biotin-tagged conjugate, which can be explained by decreased binding of the biotin-tagged conjugate to cellular receptors. Our study sheds light on the importance of site-specific albumin modification for the design of albumin-based drugs with desirable pharmaceutical properties.  相似文献   
87.
The utility of the present generation of recombinant adenovirus vectors for gene therapy applications could potentially be improved by designing targeted vectors capable of gene delivery to selected cell types in vivo. In order to achieve such targeting, we are investigating the possibilities of incorporation of ligands in the adenovirus fiber protein, which mediates primary binding of adenovirus to its cell surface receptor. Based on the proposed structure of the cell-binding domain of the fiber, we hypothesized that the HI loop of the fiber knob can be utilized as a convenient locale for incorporation of heterologous ligands. In this study, we utilized recombinant fiber proteins expressed in baculovirus-infected insect cells to demonstrate that the incorporation of the FLAG octapeptide into the HI loop does not ablate fiber trimerization and does not disturb formation of the cell-binding site localized in the knob. We then generated a recombinant adenovirus containing this modified fiber and showed that the short peptide sequence engineered in the knob is compatible with the biological functions of the fiber. In addition, by using a ligand-specific antibody, we have shown that the peptide incorporated into the knob remains available for binding in the context of mature virions containing modified fibers. These findings suggest that heterologous ligands can be incorporated into the HI loop of the fiber knob and that this locale possesses properties consistent with its employment in adenovirus retargeting strategies.Recombinant adenovirus vectors have found wide employment for a number of gene therapy applications (22, 36, 40). This fact has derived principally from the high levels of gene transfer achievable with this vector approach both in vitro and in vivo. Indeed, recombinant adenovirus vectors are distinguished from other available systems by their unique ability to accomplish in situ gene delivery to differentiated target cells in a variety of organ contexts (5, 6, 9, 10, 12, 21, 26, 28, 30, 32). Despite this property, specific aspects of the adenovirus biology have prevented the full realization of the potential of such vectors. In this regard, the broad tropism profile of the parent virus for cells of diverse tissues potentially allows unrestricted gene delivery. Thus, for the many gene therapy applications requiring targeted, cell-specific gene delivery, the promiscuous tropism of the adenovirus vector represents a confounding factor. Based on this concept, strategies to modify the native tropism of adenovirus have been developed to allow the derivation of vectors capable of targeted gene delivery.Strategies to achieve this end are directed at modifying specific steps in the adenovirus infection pathway. Adenoviruses of serotypes 2 and 5 normally achieve initial recognition and binding to target cells by means of interactions between the carboxy-terminal knob domain of the fiber protein and the primary receptor (4, 19, 39). After binding, RGD motifs in the penton base interact with cellular integrins of the αVβ3 and αVβ5 types (13, 43, 44). This interaction triggers cellular internalization whereby the virions achieve localization within the endosome. Acidification of the endosome elicits conformational changes in capsid proteins, allowing their interaction with the endosome membrane in a manner that achieves vesicle disruption and particle escape (41). Following endosomolysis, the virion translocates to the nucleus, where the subsequent steps of the viral life cycle occur. This understanding of the key role played by capsid proteins in the viral infectious pathway has suggested strategies to alter this process via modifications of these proteins.In this regard, genetic retargeting of adenovirus vectors via modification of viral genes encoding coat proteins, if successful, offers a simple way to achieve a significant improvement in the present generation of these gene-delivery vehicles. To this end, several groups have reported genetic modifications to the knob domain of adenovirus fiber protein and incorporation of such chimeric fibers into virions. For instance, Stevenson et al. (37) and Krasnykh et al. (25) reported successful generation of adenovirus type 5 (Ad5) virions containing fibers consisting of the tail and shaft domains of Ad5 fiber and the knob domain of Ad3, respectively. In addition, Michael et al. (31) demonstrated the incorporation of the gastrin-releasing peptide into the carboxy terminus of recombinant Ad5 fiber. This finding was extended by Legrand et al. (30a), who achieved rescue of recombinant adenovirus vectors containing such fibers. Another report published by Wickham et al. (45) described the generation of recombinant virus containing fibers with carboxy-terminal polylysine sequences. These studies have established key feasibility issues with respect to this genetic approach but have also demonstrated a number of potentially limiting factors.Of note, all the modifications of adenovirus fiber reported so far were directed towards the carboxy terminus of the protein. In addition, these efforts were initiated without prior knowledge of the three-dimensional (3D) structure of the fiber knob. Thus, the employment of the carboxy terminus of the fiber represented a choice of convenience without consideration of the knob tertiary structure. Clearly, 3D structural information has important bearing upon the placement of heterologous protein sequences within the knob for targeting purposes. Such localization of targeting ligands would ideally be achieved in such a manner as to allow their surface presentation and to minimally perturb the fiber quaternary structure. Thus, the recent crystallization of the fiber knob by Xia et al. (47, 48) has provided a level of structural resolution potentially allowing such a rational modification of the fiber protein. According to the proposed 3D model of the knob (Fig. (Fig.1),1), the HI loop possesses a number of features which predict its utility as an alternative site for ligand incorporation. Specifically, the HI loop does not contribute to intramolecular interactions in the knob. Therefore, incorporation of additional protein sequence should not affect the trimerization of the fiber. In addition, the loop consists mostly of hydrophilic amino acid residues and is exposed outside the knob. It thus potentially demonstrates a high degree of flexibility, creating an optimal environment for ligand incorporation. Furthermore, the lengths of HI loops vary significantly in knobs of different adenovirus serotypes. This fact suggests that alterations of the original structure of the loop, such as insertions and deletions, should be compatible with the correct folding of the entire knob domain. Finally, the HI loop is not involved in the formation of the putative cell-binding site localized in the knob. Open in a separate windowFIG. 13D model of the Ad5 fiber knob. The trimer forms a propeller-like structure when it is viewed along the threefold-symmetry axis from above. The HI loop, exposed outside the knob, connects the β-strands H and I, which are involved in the formation of the cell-binding site. (Reproduced from reference 47 by permission.)Based on these considerations, we endeavored to develop a novel approach to modify the adenovirus fiber protein by employing the HI loop of the knob for this purpose. We show in this report that it is possible to incorporate heterologous amino acid sequences into the HI loop without affecting the correct folding of the fiber polypeptide and its biological functions. Further, our results suggest that this locale may offer advantages for strategies designed to achieve tropism modification based on genetic alteration of capsid proteins.  相似文献   
88.
89.
作者对贻贝科贝类的幼虫和幼贝期发育阶段形态结构的出现和变化顺序进行了研究,其约60个不同分类单元的个体发生可归纳为4种形态发生类型或模式。主要对3个形态发生区域的阶段形态结构的起源、发育变化和同源性做了研究。其一,即中央区域,开始形成于前双壳Ⅰ期(PD-Ⅰ),在某个分类单元它可以在前双壳Ⅱ期(PD-Ⅱ)和幼贝期(N)形成,而在其它分类单元则在前双壳Ⅱ期、幼贝期和双壳期(D)形成;第二区域,即背部后区,在幼贝期出现;第三区域,即背部前区,出现于双壳期。双壳期背部后区在某个分类单元起源于幼贝期的形态构造,在其它分类单元则可能起源于双壳期的形态构造。与在贻贝分类学上应用的成体特征相比,早期发育阶段中央和背部后区的形态结构显示出很明显的发育顺序或特征变化规律。根据以前人们熟知而尚未应用到分类和系统发育研究中的早期发育阶段形态特征,作者重新修订了Soot-Ryen的现生贻贝科种上阶元分类系统,重新提出了科内系统发育关系。修订的分类系统表明,Scarlato and Starobogatov(1984)提出的贻贝科各亚科由偏顶蛤亚科开始,沿4条系统发育路线演化发展,对应其早期发育阶段的4类形态发生类型或模式。  相似文献   
90.
Aerobic anoxygenic phototrophic bacteria (AAnPs) were previously proposed to account for up to 11% of marine bacterioplankton and to potentially have great ecological importance in the world's oceans. Our data show that previously used primers based on the M subunit of anoxygenic photosynthetic reaction center genes (pufM) do not comprehensively identify the diversity of AAnPs in the ocean. We have designed and tested a new set of pufM-specific primers and revealed several new AAnP variants in environmental DNA samples and genomic libraries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号