首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9198篇
  免费   670篇
  国内免费   2篇
  2024年   4篇
  2023年   46篇
  2022年   113篇
  2021年   220篇
  2020年   132篇
  2019年   172篇
  2018年   226篇
  2017年   188篇
  2016年   312篇
  2015年   500篇
  2014年   581篇
  2013年   682篇
  2012年   819篇
  2011年   841篇
  2010年   550篇
  2009年   425篇
  2008年   555篇
  2007年   559篇
  2006年   485篇
  2005年   499篇
  2004年   421篇
  2003年   399篇
  2002年   346篇
  2001年   80篇
  2000年   56篇
  1999年   82篇
  1998年   90篇
  1997年   64篇
  1996年   54篇
  1995年   56篇
  1994年   45篇
  1993年   41篇
  1992年   24篇
  1991年   26篇
  1990年   27篇
  1989年   17篇
  1988年   13篇
  1987年   11篇
  1986年   13篇
  1985年   9篇
  1984年   11篇
  1983年   13篇
  1982年   15篇
  1981年   11篇
  1980年   5篇
  1979年   5篇
  1978年   7篇
  1977年   5篇
  1976年   5篇
  1975年   3篇
排序方式: 共有9870条查询结果,搜索用时 156 毫秒
991.
Singlet oxygen ((1)O(2)), an electronically excited form of molecular oxygen, is a mediator of biological effects of ultraviolet A radiation, stimulating signaling cascades in human cells. We demonstrate here that (1)O(2) generated by photosensitization or by thermodecomposition of 3,3'-(1,4-naphthylidene)dipropionate-1,4-endoperoxide inactivates isolated protein tyrosine phosphatases (PTPases). PTPase activities of PTP1B or CD45 were abolished by low concentrations of (1)O(2), but were largely restored by post-treatment with dithiothreitol. Electrospray ionization mass spectrometry analysis of tryptic digests of PTP1B exposed to (1)O(2) revealed oxidation of active-site Cys215 as the only cysteine residue oxidized. In summary, (1)O(2) may activate signaling cascades by interfering with phosphotyrosine dephosphorylation.  相似文献   
992.
Rozhon WM  Petutschnig EK  Jonak C 《Plasmid》2006,56(3):202-215
A small cryptic plasmid designated pHW15 was isolated from Rahnella genomospecies 2 WMR15 and its complete nucleotide sequence was determined. The plasmid contained 3002 bp with a G+C content of 47.4%. The origin of replication was identified by deletion analysis as a region of about 600 bp. This region had an identity of 70% to the replication origin of the ColE1 plasmid at the nucleotide level. Sequence analysis revealed the typical elements: RNA I, RNA II and their corresponding promoters, a sequence allowing hybridisation of RNA II to the DNA and favouring processing by RNaseH, a single-strand initiation determinant (ssi) that allows initiation of lagging-strand synthesis, and a terH sequence required for termination of lagging-strand synthesis. The plasmid contained three expressed open reading frames, one of which showed homology to a ColE1 plasmid-encoded protein. Furthermore, a multimer resolution site was identified by sequence analysis. Its deletion resulted in formation of plasmid multimers during growth leading to an increased plasmid loss rate.  相似文献   
993.
994.
Bidirectional signaling triggered by interacting ephrinB receptors (EphB) and ephrinB ligands is crucial for development and function of the vascular and nervous systems. A signaling cascade triggered by this interaction involves activation of Src kinase and phosphorylation of ephrinB. The mechanism, however, by which EphB activates Src in the ephrinB-expressing cells is unknown. Here we show that EphB stimulates a metalloproteinase cleavage of ephrinB2, producing a carboxy-terminal fragment that is further processed by PS1/gamma-secretase to produce intracellular peptide ephrinB2/CTF2. This peptide binds Src and inhibits its association with inhibitory kinase Csk, allowing autophosphorylation of Src at residue tyr418. EphrinB2/CTF2-activated Src phosphorylates ephrinB2 and inhibits its processing by gamma-secretase. These data show that the PS1/gamma-secretase system controls Src activation and ephrinB phosphorylation by regulating production of Src activator ephrinB2/CTF2. Accordingly, gamma-secretase inhibitors prevented the EphB-induced sprouting of endothelial cells and the recruitment of Grb4 to ephrinB. PS1 FAD and gamma-secretase dominant-negative mutants inhibited the EphB-induced cleavage of ephrinB2 and Src autophosphorylation, raising the possibility that FAD mutants interfere with the functions of Src and ephrinB2 in the CNS.  相似文献   
995.
TopBP1 and Claspin are adaptor proteins that facilitate phosphorylation of Chk1 by the ATR kinase in response to genotoxic stress. Despite their established requirement for Chk1 activation, the exact way in which TopBP1 and Claspin control Chk1 phosphorylation remains unclear. We show that TopBP1 tightly colocalizes with ATR in distinct nuclear subcompartments generated by DNA damage. Although depletion of TopBP1 by RNA interference (RNAi) strongly impaired phosphorylation of multiple ATR targets, including Chk1, Nbs1, Smc1, and H2AX, it did not interfere with ATR assembly at the sites of DNA damage. These findings challenge the current concept of ATR activation by recruitment to damaged DNA. In contrast, Claspin, like Chk1, remained distributed throughout the nucleus both before and after DNA damage. Consistently, the RNAi-mediated ablation of Claspin selectively abrogated ATR's ability to phosphorylate Chk1 but not other ATR targets. In addition, downregulation of Claspin mimicked Chk1 inactivation by inducing spontaneous DNA damage. Finally, we show that TopBP1 is required for the DNA damage-induced interaction between Claspin and Chk1. Together, these results suggest that while TopBP1 is a general regulator of ATR, Claspin operates downstream of TopBP1 to selectively regulate the Chk1-controlled branch of the genotoxic stress response.  相似文献   
996.
997.
In vertebrates, homologous recombinational repair (HRR) requires RAD51 and five RAD51 paralogs (XRCC2, XRCC3, RAD51B, RAD51C and RAD51D) that all contain conserved Walker A and B ATPase motifs. In human RAD51D we examined the requirement for these motifs in interactions with XRCC2 and RAD51C, and for survival of cells in response to DNA interstrand crosslinks (ICLs). Ectopic expression of wild-type human RAD51D or mutants having a non-functional A or B motif was used to test for complementation of a rad51d knockout hamster CHO cell line. Although A-motif mutants complement very efficiently, B-motif mutants do not. Consistent with these results, experiments using the yeast two- and three-hybrid systems show that the interactions between RAD51D and its XRCC2 and RAD51C partners also require a functional RAD51D B motif, but not motif A. Similarly, hamster Xrcc2 is unable to bind to the non-complementing human RAD51D B-motif mutants in co-immunoprecipitation assays. We conclude that a functional Walker B motif, but not A motif, is necessary for RAD51D's interactions with other paralogs and for efficient HRR. We present a model in which ATPase sites are formed in a bipartite manner between RAD51D and other RAD51 paralogs.  相似文献   
998.
High-throughput gene trapping is a random approach for inducing insertional mutations across the mouse genome. This approach uses gene trap vectors that simultaneously inactivate and report the expression of the trapped gene at the insertion site, and provide a DNA tag for the rapid identification of the disrupted gene. Gene trapping has been used by both public and private institutions to produce libraries of embryonic stem (ES) cells harboring mutations in single genes. Presently, approximately 66% of the protein coding genes in the mouse genome have been disrupted by gene trap insertions. Among these, however, genes encoding signal peptides or transmembrane domains (secretory genes) are underrepresented because they are not susceptible to conventional trapping methods. Here, we describe a high-throughput gene trapping strategy that effectively targets secretory genes. We used this strategy to assemble a library of ES cells harboring mutations in 716 unique secretory genes, of which 61% were not trapped by conventional trapping, indicating that the two strategies are complementary. The trapped ES cell lines, which can be ordered from the International Gene Trap Consortium (http://www.genetrap.org), are freely available to the scientific community.  相似文献   
999.
1000.
Immunotherapy has been widely investigated for its potential use in cancer therapy and it becomes more and more apparent that the selection of target antigens is essential for its efficacy. Indeed, limited clinical efficacy is partly due to immune evasion mechanisms of neoplastic cells, e.g. downregulation of expression or presentation of the respective antigens. Consequently, antigens contributing to tumor cell survival seem to be more suitable therapeutic targets. However, even such antigens may be subject to immune evasion due to impaired processing and cell surface expression. Since development and progression of tumors is not only dependent on cancer cells themselves but also on the active contribution of the stromal cells, e.g. by secreting growth supporting factors, enzymes degrading the extracellular matrix or angiogenic factors, the tumor stroma may also serve as a target for immune intervention. To this end several antigens have been identified which are induced or upregulated on the tumor stroma. Tumor stroma-associated antigens are characterized by an otherwise restricted expression pattern, particularly with respect to differentiated tissues, and they have been successfully targeted by passive and active immunotherapy in preclinical models. Moreover, some of these strategies have already been translated into clinical trials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号