首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2097篇
  免费   58篇
  国内免费   17篇
  2022年   14篇
  2021年   32篇
  2020年   18篇
  2019年   26篇
  2018年   43篇
  2017年   26篇
  2016年   39篇
  2015年   34篇
  2014年   72篇
  2013年   100篇
  2012年   112篇
  2011年   147篇
  2010年   112篇
  2009年   81篇
  2008年   76篇
  2007年   87篇
  2006年   78篇
  2005年   76篇
  2004年   63篇
  2003年   64篇
  2002年   82篇
  2001年   92篇
  2000年   72篇
  1999年   37篇
  1998年   25篇
  1997年   11篇
  1994年   10篇
  1992年   27篇
  1991年   32篇
  1990年   29篇
  1989年   29篇
  1988年   29篇
  1987年   32篇
  1986年   27篇
  1985年   29篇
  1984年   27篇
  1983年   22篇
  1979年   15篇
  1978年   10篇
  1977年   14篇
  1976年   13篇
  1975年   22篇
  1974年   19篇
  1973年   20篇
  1972年   17篇
  1971年   17篇
  1970年   14篇
  1968年   18篇
  1967年   13篇
  1966年   12篇
排序方式: 共有2172条查询结果,搜索用时 46 毫秒
81.
Production of biosurfactants by acidophilic mycobacteria was demonstrated in the course of aerobic degradation of hydrocarbons (n-tridecane, n-tricosane, n-hexacosane, model mixtures of С14–С17, С1219, and С9–С21n-alkanes, 2,2,4,4,6,8,8-heptamethylnonane, squalane, and butylcyclohexane) and their complex mixtures (hydrocarbon gas condensate, kerosene, black oil, and paraffin oil) under extremely acidic conditions (pH 2.5). When grown on hydrocarbons, the studied bacterial culture AGS10 caused a decrease in the surface and interfacial tension of the solutions (to the lowest observed values of 26.0 and 1.3 mN/m, respectively) compared to the bacteria-free control. The rheological characteristics of the culture changed only when mycobacteria were grown on hydrocarbons. Neither the medium nor the cell-free culture liquid had the surfactant activity, which indicated formation of an endotype biosurfactant by mycobacteria. Biodegradation of n-alkanes was accompanied by an increase in cell numbers, surfactant production, and changes in the hydrophobicity of bacterial cell surface and in associated phenomena of adsorption and desorption to the hydrocarbon phase. Research on AGS10 culture liquids containing the raw biosurfactant demonstrated the preservation of its activity within a broad range of pH, temperature, and salinity.  相似文献   
82.
White goosefoot plants (Chenopodium album L. of the family Chenopodiaceae) grown at various NaCl concentrations (3–350 mM) in the nutrient solution were used to study the cell ultrastructure as well as the qualitative and quantitative composition of fatty acids in the lipids of vegetative organs. In addition, the biomass of Ch. album vegetative organs, the water content, and the concentrations of K+, Na+, and Cl were determined. The growth rates of plants raised at NaCl concentrations up to 200–250 mM were the same as for the control plants grown at 3 mM NaCl; the growth parameters remained rather high even at NaCl concentrations of 300–350 mM. The water content in Ch. album organs remained high at all NaCl concentrations tested. Analysis of the ionic status of Ch. album revealed a comparatively high K+ content in plant organs. At low NaCl concentrations in the nutrient solution, K+ ions were the dominant contributors to the osmolarity (the total concentration of osmotically active substances) and, consequently, to the lowered cell water potential in leaves and roots. As the concentration of NaCl was increased, the plant organs accumulated larger amounts of Na+ and Cl, and the contribution of these ion species to osmolarity became increasingly noticeable. At 300–350 mM NaCl the contribution of Na+ and Cl to osmolarity was comparable to that of K+. An electron microscopy study of Ch. album cells revealed that, apart from the usual response to salinity manifested in typical ultrastructural changes of chloroplasts, mitochondria, and the cytosol, the salinity response comprised the enhanced formation of endocytic structures and exosomes and stimulation of autophagy. It is supposed that activation of these processes is related to the removal from the cytoplasm of toxic substances and the cell structures impaired by salt stress conditions. The qualitative and quantitative composition of fatty acids in the lipids of Ch. album organs was hardly affected by NaCl level. These findings are consistent with the high salt tolerance of Ch. album, manifested specifically in retention of growth functions under wide-range variations of NaCl concentration in the nutrient solution and in maintenance of K+, Na+, and Cl content in organs at a constant level characteristic of untreated plants.  相似文献   
83.
Endothelial progenitor cells (EPC) participate in revascularization and angiogenesis. EPC can be cultured in vitro from mononuclear cells of peripheral blood, umbilical cord blood or bone marrow; they also can be transdifferentiated from mesenchymal stem cells (MSC). We isolated EPCs from Wharton's jelly (WJ) using two methods. The first method was by obtaining MSC from WJ and characterizing them by flow cytometry and their adipogenic and osteogenic differentiation, then applying endothelial growth differentiating media. The second method was by direct culture of cells derived from WJ into endothelial differentiating media. EPCs were characterized by morphology, Dil-LDL uptake/UEA-1 immunostaining and testing the expression of endothelial markers by flow cytometry and RT-PCR. We found that MSC derived from WJ differentiated into endothelial-like cells using simple culture conditions with endothelium induction agents in the medium.  相似文献   
84.
Taking into account the rising trend of the incidence of cancers of various organs, effective therapies are urgently needed to control human malignancies. However, almost all chemotherapy drugs currently on the market cause serious side effects. Fortunately, several studies have shown that some non‐toxic biological macromolecules, including algal polysaccharides, possess anti‐cancer activities or can increase the efficacy of conventional chemotherapy drugs. Polysaccharides are characteristic secondary metabolites of many algae. The efficacy of polysaccharides on the normal and cancer cells is not well investigated, but our investigations proved a cell specific effect of a newly isolated extracellular polysaccharide from the red microalga Porphyridium sordidum. The investigated substance was composed of xylose:glucose and galactose:manose:rhamnose in a molar ratio of 1:0.52:0.44:0.31. Reversible electroporation has been exploited to increase the transport through the plasma membrane into the tested breast cancer tumor cells MCF‐7 and MDA‐MB231. Application of 75 µg/mL polysaccharide in combination with 200 V/cm electroporation induced 40% decrease in viability of MDA‐MB231 cells and changes in cell morphology while control cells (MCF10A) remained with normal morphology and kept vitality.  相似文献   
85.
86.
Russian Journal of Plant Physiology - The data concerning morphometric characterization of chloroplasts belonging to two groups of halophytes distinguished by their salt...  相似文献   
87.
Russian Journal of Plant Physiology - Cytophysiological adaptive features of apple fruits (Malus domestica Borkh.) were examined as a function of growth altitude—300, 500, 700, and 1200 m...  相似文献   
88.
89.
The eukaryotic class 1 polypeptide chain release factor is a three-domain protein involved in the termination of translation, the final stage of polypeptide biosynthesis. In attempts to understand the roles of the middle domain of the eukaryotic class 1 polypeptide chain release factor in the transduction of the termination signal from the small to the large ribosomal subunit and in peptidyl-tRNA hydrolysis, its high-resolution NMR structure has been obtained. The overall fold and the structure of the beta-strand core of the protein in solution are similar to those found in the crystal. However, the orientation of the functionally critical GGQ loop and neighboring alpha-helices has genuine and noticeable differences in solution and in the crystal. Backbone amide protons of most of the residues in the GGQ loop undergo fast exchange with water. However, in the AGQ mutant, where functional activity is abolished, a significant reduction in the exchange rate of the amide protons has been observed without a noticeable change in the loop conformation, providing evidence for the GGQ loop interaction with water molecule(s) that may serve as a substrate for the hydrolytic cleavage of the peptidyl-tRNA in the ribosome. The protein backbone dynamics, studied using 15N relaxation experiments, showed that the GGQ loop is the most flexible part of the middle domain. The conformational flexibility of the GGQ and 215-223 loops, which are situated at opposite ends of the longest alpha-helix, could be a determinant of the functional activity of the eukaryotic class 1 polypeptide chain release factor, with that helix acting as the trigger to transmit the signals from one loop to the other.  相似文献   
90.
The expression of the laminin-binding protein (LBP) on cellular membranes in different cell lines has been studied. A high level of replication of Venezuelan equine encephalomyelitis (VEE) virus was registered in Vero cells with high levels of LBP on the cell surface. The treatment of Vero cells with monoclonal antibodies to human LBP reduced VEE virus replication by a factor of more than 200. A low level of LBP expression on the surface of 293 cells was increased via transfection by plasmid with gene for human LBP. The VEE virus replication in transfected cells (9S2) was increased by more that 2000 times compared to the 293 cells. The results demonstrated the principal role of cellular LBP in the entry of VEE virus into mammalian cells. It is proposed that LBP is a key cellular protein for the early stage of the VEE virus replication in cells. LBP may be a target protein for the development of a new generation of antiviral drugs capable of inhibiting (enhancing) the alphavirus replication in human cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号