首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   270篇
  免费   20篇
  290篇
  2022年   2篇
  2021年   3篇
  2019年   1篇
  2018年   6篇
  2017年   3篇
  2016年   5篇
  2015年   4篇
  2014年   12篇
  2013年   11篇
  2012年   19篇
  2011年   24篇
  2010年   12篇
  2009年   7篇
  2008年   15篇
  2007年   19篇
  2006年   16篇
  2005年   18篇
  2004年   23篇
  2003年   29篇
  2002年   24篇
  2001年   5篇
  2000年   5篇
  1999年   3篇
  1998年   3篇
  1997年   3篇
  1996年   4篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1991年   4篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有290条查询结果,搜索用时 15 毫秒
141.
142.
In metalloproteins, the protein environment modulates metal properties to achieve the required goal, which can be protein stabilization or function. The analysis of metal sites at the atomic level of detail provided by protein structures can thus be of benefit in functional and evolutionary studies of proteins. In this work, we propose a structural bioinformatics approach to the study of metalloproteins based on structural templates of metal sites that include the PDB coordinates of protein residues forming the first and the second coordination sphere of the metal. We have applied this approach to non-heme iron sites, which have been analyzed at various levels. Templates of sites located in different protein domains have been compared, showing that similar sites can be found in unrelated proteins as the result of convergent evolution. Templates of sites located in proteins of a large superfamily have been compared, showing possible mechanisms of divergent evolution of proteins to achieve different functions. Furthermore, template comparisons have been used to predict the function of uncharacterized proteins, showing that similarity searches focused on metal sites can be advantageously combined with typical whole-domain comparisons. Structural templates of metal sites, finally, may constitute the basis for a systematic classification of metalloproteins in databases.  相似文献   
143.
144.
The relative importance of paramagnetism-based constraints (i.e. pseudocontact shifts, residual dipolar couplings and nuclear relaxation enhancements) with respect to classical constraints in solution structure determinations of paramagnetic metalloproteins has been addressed. The protein selected for the study is a calcium binding protein, calbindin D9k, in which one of the two calcium ions is substituted with cerium(III). From 1823 NOEs, 191 dihedral angles, 15 hydrogen bonds, 769 pseudocontact shifts, 64 orientational constraints, 26 longitudinal relaxation rates, plus 969 pseudocontact shifts from other lanthanides, a final family with backbone r.m.s.d. from the average of 0.25 A was obtained. Then, several families of structures were generated either by removing subsets of paramagnetism-based constraints or by removing increasing numbers of NOEs. The results show the relative importance of the various paramagnetism-based constraints and their good complementarity with the diamagnetic ones. Although a resolved structure cannot be obtained with paramagnetism-based constraints only, it is shown that a reasonably well resolved backbone fold can be safely obtained by retaining as few as 29 randomly chosen long-range NOEs using the standard version of the program PSEUDYANA.  相似文献   
145.
Sco proteins are widespread in eukaryotic and in many prokaryotic organisms. They have a thioredoxin-like fold and bind a single copper(I) or copper(II) ion through a CXXXC motif and a conserved His ligand, with both tight and weak affinities. They have been implicated in the assembly of the CuA site of cytochrome c oxidase as copper chaperones and/or thioredoxins. In this work we have structurally characterized a Sco domain which is naturally fused with a typical electron transfer molecule, i.e., cytochrome c, in Pseudomonas putida. The thioredoxin-like Sco domain does not bind copper(II), binds copper(I) with weak affinity without involving the conserved His, and has redox properties consisting of a thioredoxin activity and of the ability of reducing copper(II) to copper(I), and iron(III) to iron(II) of the cytochrome c domain. These findings indicate that the His ligand coordination is the discriminating factor for introducing a metallochaperone function in a thioredoxin-like fold, typically responsible for electron transfer processes. A comparative structural analysis of the Sco domain from P. putida versus eukaryotic Sco proteins revealed structural determinants affecting the formation of a tight-affinity versus a weak-affinity copper binding site in Sco proteins.  相似文献   
146.
147.
148.
This paper is a continuation of our study of the connection between the changing environment and the changing use of particular elements in organisms in the course of their combined evolution (Decaria, Bertini and Williams, Metallomics, 2010, 2, 706). Here we treat the changes in copper proteins in historically the same increasingly oxidising environmental conditions. The study is a bioinformatic analysis of the types and the numbers of copper domains of proteins from 435 DNA sequences of a wide range of organisms available in NCBI, using the method developed by Andreini, Bertini and Rosato in Accounts of Chemical Research 2009, 42, 1471. The copper domains of greatest interest are found predominantly in copper chaperones, homeostatic proteins and redox enzymes mainly used outside the cytoplasm which are in themselves somewhat diverse. The multiplicity of these proteins is strongly marked. The contrasting use of the iron and heme iron proteins in oxidations, mostly in the cytoplasm, is compared with them and with activity of zinc fingers during evolution. It is shown that evolution is a coordinated development of the chemistry of elements with use of novel and multiple copies of their proteins as their availability rises in the environment.  相似文献   
149.
We report on electrophoretic, spectroscopic, and computational studies aimed at clarifying, at atomic resolution, the electrostatics of folded and unfolded bovine β-lactoglobulin (BLG) with a detailed characterization of the specific aminoacids involved. The procedures we used involved denaturant gradient gel electrophoresis, isoelectric focusing, electrophoretic titration curves, circular dichroism and fluorescence spectra in the presence of increasing concentrations of urea (up to 8 M), electrostatics computations and low-mode molecular dynamics. Discrepancy between electrophoretic and spectroscopic evidence suggests that changes in mobility induced by urea are not just the result of changes in gyration radius upon unfolding. Electrophoretic titration curves run across a pH range of 3.5–9 in the presence of urea suggest that more than one aminoacid residue may have anomalous pK a value in native BLG. Detailed computational studies indicate a shift in pKa of Glu44, Glu89, and Glu114, mainly due to changes in global and local desolvation. For His161, the formation of hydrogen bond(s) could add up to desolvation contributions. However, since His161 is at the C terminus, the end-effect associated to the solvated form strongly influences its pK a value with extreme variation between crystal structures on one side and NMR or low-mode molecular dynamics structures on the other. The urea concentration effective in BLG unfolding depends on pH, with higher stability of the protein at lower pH.  相似文献   
150.
Moschen  Ivano  Bröer  Angelika  Galić  Sandra  Lang  Florian  Bröer  Stefan 《Neurochemical research》2012,37(11):2562-2568
Neurochemical Research - Metabolism of short-chain fatty acids (SCFA) in the brain, particularly that of acetate, appears to occur mainly in astrocytes. The differential use has been attributed to...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号