首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1611篇
  免费   80篇
  1691篇
  2023年   11篇
  2022年   31篇
  2021年   41篇
  2020年   26篇
  2019年   39篇
  2018年   57篇
  2017年   47篇
  2016年   62篇
  2015年   96篇
  2014年   95篇
  2013年   152篇
  2012年   155篇
  2011年   141篇
  2010年   77篇
  2009年   73篇
  2008年   90篇
  2007年   77篇
  2006年   77篇
  2005年   46篇
  2004年   46篇
  2003年   65篇
  2002年   46篇
  2001年   8篇
  2000年   8篇
  1999年   12篇
  1998年   8篇
  1997年   11篇
  1996年   7篇
  1995年   10篇
  1994年   5篇
  1993年   7篇
  1992年   9篇
  1991年   9篇
  1990年   7篇
  1989年   6篇
  1988年   4篇
  1987年   8篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1967年   1篇
  1965年   1篇
排序方式: 共有1691条查询结果,搜索用时 0 毫秒
71.
Cyclic 3′5′ adenosine monophosphate (cAMP)-dependent-protein kinase (PKA) signaling is a fundamental regulatory pathway for mediating cellular responses to hormonal stimuli. The pathway is activated by high-affinity association of cAMP with the regulatory subunit of PKA and signal termination is achieved upon cAMP dissociation from PKA. Although steps in the activation phase are well understood, little is known on how signal termination/resetting occurs. Due to the high affinity of cAMP to PKA (KD ∼ low nM), bound cAMP does not readily dissociate from PKA, thus begging the question of how tightly bound cAMP is released from PKA to reset its signaling state to respond to subsequent stimuli. It has been recently shown that phosphodiesterases (PDEs) can catalyze dissociation of bound cAMP and thereby play an active role in cAMP signal desensitization/termination. This is achieved through direct interactions with the regulatory subunit of PKA, thereby facilitating cAMP dissociation and hydrolysis. In this study, we have mapped direct interactions between a specific cyclic nucleotide phosphodiesterase (PDE8A) and a PKA regulatory subunit (RIα isoform) in mammalian cAMP signaling, by a combination of amide hydrogen/deuterium exchange mass spectrometry, peptide array, and computational docking. The interaction interface of the PDE8A:RIα complex, probed by peptide array and hydrogen/deuterium exchange mass spectrometry, brings together regions spanning the phosphodiesterase active site and cAMP-binding sites of RIα. Computational docking combined with amide hydrogen/deuterium exchange mass spectrometry provided a model for parallel dissociation of bound cAMP from the two tandem cAMP-binding domains of RIα. Active site coupling suggests a role for substrate channeling in the PDE-dependent dissociation and hydrolysis of cAMP bound to PKA. This is the first instance, to our knowledge, of PDEs directly interacting with a cAMP-receptor protein in a mammalian system, and highlights an entirely new class of binding partners for RIα. This study also highlights applications of structural mass spectrometry combined with computational docking for mapping dynamics in transient signaling protein complexes. Together, these results present a novel and critical role for phosphodiesterases in moderating local concentrations of cAMP in microdomains and signal resetting.  相似文献   
72.
Chlamydomonas reinhardtii arg7-8 (arg2) mutant strains carrying a hitherto undescribed mutation in their argininosuccinate lyase gene (ARG7) that leads to arginine auxotrophy have been used together with the corresponding wild-type gene as a very reliable transformation system since 1989. In this study, we finally identify the molecular nature of the arg7-8 mutation as a (6073)G to A transition in exon 9 of ARG7 leading to a (288)Gly to Ser exchange near the active site of the protein. The same mutation was found in the ARG7 genes of three commonly used C. reinhardtii laboratory strains, namely cw15-302 arg2, CC-48, and CC-1618. We did not observe exact spontaneous reversion of the arg7-8 allele in our study, but did identify two different and rare intragenic suppressor mutations, (27)Leu to Phe and (285)Tyr to Phe. In our hands, only transformation of the arg7-8 strain with a truncated nonfunctional wild-type ARG7 gene lacking 124 codons at its 5' end led to exact reversion of the mutant base (6073)A to the wild-type (6073)G, presumably by recombination. This system offers a positive selection scheme for homologous recombination (HR) and may, therefore, be useful to the methodical improvement of recombination in Chlamydomonas.  相似文献   
73.
74.
Epoxiconazole (CAS‐No. 133855‐98‐8) was recently shown to cause both a marked depletion of maternal estradiol blood levels and a significantly increased incidence of late fetal mortality when administered to pregnant rats throughout gestation (GD 7–18 or 21); estradiol supplementation prevented this epoxiconazole effect in rats (Stinchcombe et al., 2013), indicating that epoxiconazole‐mediated estradiol depletion is a critical key event for induction of late fetal resorptions in rats. For further elucidation of the mode of action, the placentas from these modified prenatal developmental toxicity experiments with 23 and 50 mg/kg bw/d epoxiconazole were subjected to a detailed histopathological examination. This revealed dose‐dependent placental degeneration characterized by cystic dilation of maternal sinuses in the labyrinth, leading to rupture of the interhemal membrane. Concomitant degeneration occurred in the trophospongium. Both placentas supporting live fetuses and late fetal resorptions were affected; the highest degree of severity was observed in placentas with late resorptions. Placental degeneration correlated with a severe decline in maternal serum estradiol concentration. Supplementation with 0.5 and 1.0 μg of the synthetic estrogen estradiol cyclopentylpropionate per day reduced the severity of the degeneration in placentas with live fetuses. The present study demonstrates that both the placental degeneration and the increased incidence of late fetal resorptions are due to decreased levels of estrogen, since estrogen supplementation ameliorates the former and abolishes the latter. Birth Defects Res (Part B) 98:208–221, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
75.
76.
In the kidney vitamin D is converted to its active form. Since vitamin D exerts its activity through binding to the nuclear vitamin D receptor (VDR), most genetic studies have primarily focused on variation within this gene. Therefore, analysis of genetic variation in VDR and other vitamin D pathway genes may provide insight into the role of vitamin D in renal cell carcinoma (RCC) etiology. RCC cases (N = 777) and controls (N = 1,035) were genotyped to investigate the relationship between RCC risk and variation in eight target genes. Minimum-p-value permutation (Min-P) tests were used to identify genes associated with risk. A three single nucleotide polymorphism (SNP) sliding window was used to identify chromosomal regions with a False Discovery Rate of <10%, where subsequently, haplotype relative risks were computed in Haplostats. Min-P values showed that VDR (p-value = 0.02) and retinoid-X-receptor-alpha (RXRA) (p-value = 0.10) were associated with RCC risk. Within VDR, three haplotypes across two chromosomal regions of interest were identified. The first region, located within intron 2, contained two haplotypes that increased RCC risk by approximately 25%. The second region included a haplotype (rs2239179, rs12717991) across intron 4 that increased risk among participants with the TC (OR = 1.31, 95% CI = 1.09–1.57) haplotype compared to participants with the common haplotype, TT. Across RXRA, one haplotype located 3′ of the coding sequence (rs748964, rs3118523), increased RCC risk 35% among individuals with the variant haplotype compared to those with the most common haplotype. This study comprehensively evaluated genetic variation across eight vitamin D pathway genes in relation to RCC risk. We found increased risk associated with VDR and RXRA. Replication studies are warranted to confirm these findings.  相似文献   
77.
Vernalization-induced flowering is an effect of the epigenetic regulation of gene expression through DNA methylation and histone modifications. Vernalization-mediated silencing of a floral repressor through histone modifications was shown in Arabidopsis thaliana. However, for Brassica napus L., the mechanism underlying vernalization is unclear, and the roles of DNA methylation and histone modifications have not been established. This study revealed the profiles of changes in the DNA methylation state during vernalization (after 14, 35, 56 days) and the subsequent growth in long- or short-day photoperiods (after 2, 7, 14 days) in the winter and spring rapeseed using TLC and MSAP techniques. TLC analysis showed a significant decrease in the amount of 5-methylcytosine (m5C) in genomic DNA in both cultivars at the beginning of vernalization, but upon its termination, the winter rape showed a reduced level of m5C contrary to a significantly increased level in the spring rape. MSAP analysis revealed that winter and spring rapeseed differed in the MSAP loci which were demethylated/methylated in the course of the experiment and presented diverse profiles of changes in the methylation state. The winter rape showed permanent demethylations at 69.2 % of MSAP loci in the course of vernalization that were mostly preserved upon its termination. The spring rape showed similar numbers of demethylations and methylations that were mainly transient. The study provides evidence of the role of DNA methylation in vernalization for rapeseed and for the significant prevalence of demethylations at the beginning of vernalization, which is necessary for the transition to reproductive growth.  相似文献   
78.
The levels of drug use among youths under 14 have remained extremely low for the past few years, as well as in most European countries. Yet, patterns of early drug use are often related to high-risk behaviours that require specific public policy strategies. Over the last years, the Government has set the target of reducing levels of drug use among specific groups such as young people: an awareness-raising media campaign has been launched and a specific outpatients clinics setting has been implemented for cannabis users in particular. This paper examines the relationship between health service providers and criminal justice authorities underlying the effectiveness of the current system. It underlines the need for an early screening and early interventions so as to avoid the shift from simple use to misuse or dependence.  相似文献   
79.
Here we present the complement of the carbohydrate uptake systems of the strictly anaerobic probiotic Bifidobacterium longum NCC2705. The genome analysis of this bacterium predicts that it has 19 permeases for the uptake of diverse carbohydrates. The majority belongs to the ATP-binding cassette transporter family with 13 systems identified. Among them are permeases for lactose, maltose, raffinose, and fructooligosaccharides, a commonly used prebiotic additive. We found genes that encode a complete phosphotransferase system (PTS) and genes for three permeases of the major facilitator superfamily. These systems could serve for the import of glucose, galactose, lactose, and sucrose. Growth analysis of NCC2705 cells combined with biochemical characterization and microarray data showed that the predicted substrates are consumed and that the corresponding transport and catabolic genes are expressed. Biochemical analysis of the PTS, in which proteins are central in regulation of carbon metabolism in many bacteria, revealed that B. longum has a glucose-specific PTS, while two other species (Bifidobacterium lactis and Bifidobacterium bifidum) have a fructose-6-phosphate-forming fructose-PTS instead. It became obvious that most carbohydrate systems are closely related to those from other actinomycetes, with a few exceptions. We hope that this report on B. longum carbohydrate transporter systems will serve as a guide for further in-depth analyses on the nutritional lifestyle of this beneficial bacterium.  相似文献   
80.
Aggregata octopiana (Apicomplexa, Aggregatidae) is the most prevalent coccidian in the wild common octopus (Octopus vulgaris), whose heteroxenous life cycle includes gamogony and sporogony undergoing in the octopus digestive tract. In the infected reared octopi, we observed an unusual extraintestinal distribution of the coccidian, with both gamogony and sporogony ongoing in dermal and gill tissue. Oocysts and macrogamonts were embedded in the dermal connective tissue of octopian arms, demarcated by a thin cyst wall or multilayered dark membrane. In gill connective and epithelial tissue all developmental stages were observed, eliciting hemocytic infiltration. Sometimes a complete substitution of the tissue by cysts and developmental stages occurred, resulting in necrosis of gill tissue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号