Storage proteins of the seeds (cotyledons) of the South-American speciesPhaseolus caracalla were compared by means of immunoelectrophoretic methods with other representatives of the genusPhaseolus. These proteins most resemble the proteins of the co-called tropical group (i.e. Ph. atropurpureus, Ph. geophilus, Ph. bracteatus, Ph. semierectus) and least the so-called American endemites (Ph. vulgaris, Ph. coccineus, Ph. acutifolius, Ph. lunatus), the main globulin of which is of a completely different specificity. The proteins ofPh. caracalla are less similar to the group of the so-called Asiatic species (Ph. aureus, Ph. calcaratus, Ph. angularis, Ph. aconitifolius, Ph. trilobus) including the analyzed representatives ofVigna sinensis; their main globulin is only partly similar to that ofPh. caracalla. Some considerations on the relationship ofPh. caracalla with the so-called tropical species is presented. 相似文献
Aminoacyl-tRNA synthetases (AARSs) play a critical role in translation and are thus required in three plant protein-synthesizing compartments: cytosol, mitochondria and plastids. A systematic study had previously shown extensive sharing of organellar AARSs from Arabidopsis thaliana, mostly between mitochondria and chloroplasts. However, distribution of AARSs from monocot species, such as maize, has never been experimentally investigated. Here we demonstrate dual targeting of maize seryl-tRNA synthetase, SerZMo, into both mitochondria and chloroplasts using combination of complementary methods, including in vitro import assay, transient expression analysis of green fluorescent protein (GFP) fusions and immunodetection. We also show that SerZMo dual localization is established by the virtue of an ambiguous targeting peptide. Full-length SerZMo protein fused to GFP is targeted to chloroplast stromules, indicating that SerZMo protein performs its function in plastid stroma. The deletion mutant lacking N-terminal region of the ambiguous SerZMo targeting peptide was neither targeted into mitochondria nor chloroplasts, indicating the importance of this region in both mitochondrial and chloroplastic import. 相似文献
Fossil hominids often processed material held between their upper and lower teeth. Pulling with one hand and cutting with the other, they occasionally left impact cut marks on the lip (labial) surface of their incisors and canines. From these actions, it possible to determine the dominant hand used. The frequency of these oblique striations in an array of fossil hominins documents the typically modern pattern of 9 right‐ to 1 left‐hander. This ratio among living Homo sapiens differs from that among chimpanzees and bonobos and more distant primate relatives. Together, all studies of living people affirm that dominant right‐handedness is a uniquely modern human trait. The same pattern extends deep into our past. Thus far, the majority of inferred right‐handed fossils come from Europe, but a single maxilla from a Homo habilis, OH‐65, shows a predominance of right oblique scratches, thus extending right‐handedness into the early Pleistocene of Africa. Other studies show right‐handedness in more recent African, Chinese, and Levantine fossils, but the sample compiled for non‐European fossil specimens remains small. Fossil specimens from Sima del los Huesos and a variety of European Neandertal sites are predominately right‐handed. We argue the 9:1 handedness ratio in Neandertals and the earlier inhabitants of Europe constitutes evidence for a modern pattern of handedness well before the appearance of modern Homo sapiens. 相似文献
Changes in cytokinin pool and cytokinin oxidase/dehydrogenase activity (CKX EC: 1.5.99.12) in response to increasing abscisic
acid (ABA) concentrations (0.5–10 μM) were assessed in the last fully expanded leaves and secondary roots of two pea (Pisum sativum) varieties with different vegetation periods. Certain organ diversity in CKX response to exogenous ABA was observed. Treatment
provoked altered cytokinin pool in the aboveground parts of both studied cultivars. Specific CKX activity was influenced significantly
basically in roots of the treated plants. Results suggest that ABA-mediated cytokinin pool changes are leaf-specific and involve
certain root signals in which CKX activity presents an important link. This enzymatic activity most probably regulates vascular
transport of active cytokinins from roots to shoots. 相似文献
Increased bone resorption is a major characteristic of multiple myeloma and is caused by osteoclast activation and osteoblast inhibition (uncoupling). Myeloma cells alter the local regulation of bone metabolism by increasing the receptor activator of NF-kappaB ligand (RANKL) and decreasing osteoprotegerin expression within the bone marrow microenvironment, thereby stimulating the central pathway for osteoclast formation and activation. In addition, they produce the chemokines MIP-1alpha, MIP-1beta, and SDF-1alpha, which also increase osteoclast activity. On the other hand, myeloma cells suppress osteoblast function by the secretion of osteoblast inhibiting factors, e.g., the Wnt inhibitors DKK-1 and sFRP-2. Moreover, they inhibit differentiation of osteoblast precursors and induce apoptosis in osteoblasts. The resulting bone destruction releases several cytokines, which in turn promote myeloma cell growth. Therefore, the inhibition of bone resorption could stop this vicious circle and not only decrease myeloma bone disease, but also the tumor progression. 相似文献
Cytotechnology - Six extracts were obtained from plant species Hypericum perforatum L., collected at Samsun in Turkey. The aim of this study was to examine the mechanisms of the anticancer activity... 相似文献
Abstract The enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are primary targets in attenuating the symptoms of neurodegenerative diseases. Their inhibition results in elevated concentrations of the neurotransmitter acetylcholine which supports communication among nerve cells. It was previously shown for trans-4/5-arylethenyloxazole compounds to have moderate AChE and BChE inhibitory properties. A preliminary docking study showed that elongating oxazole molecules and adding a new NH group could make them more prone to bind to the active site of both enzymes. Therefore, new trans-amino-4-/5-arylethenyl-oxazoles were designed and synthesised by the Buchwald-Hartwig amination of a previously synthesised trans-chloro-arylethenyloxazole derivative. Additionally, naphthoxazole benzylamine photoproducts were obtained by efficient photochemical electrocyclization reaction. Novel compounds were tested as inhibitors of both AChE and BChE. All of the compounds exhibited binding preference for BChE over AChE, especially for trans-amino-4-/5-arylethenyl-oxazole derivatives which inhibited BChE potently (IC50 in µM range) and AChE poorly (IC50?100?µM). Therefore, due to the selectivity of all of the tested compounds for binding to BChE, these compounds could be applied for further development of cholinesterase selective inhibitors.
HIGHLIGHTS
Series of oxazole benzylamines were designed and synthesised
The tested compounds showed binding selectivity for BChE
The effects of non-authochtonous Enterococcus faecium AL41 = CCM 8558, enterocin M-producing and probiotic strain were tested on the microbiota, phagocytic activity, hydrolytic enzymes, biochemical parameters and dry matter in horses based on its previous benefits demonstrated in other animals. E. faecium CCM 8558 sufficiently colonized the digestive tract of horses. At day 14, its counts reached 2.35 ± 0.70 CFU/g (log 10) on average. The identity of CCM 8558 was confirmed by means of PCR after its re-isolation from horse faeces. The inhibition activity of CCM 8558 was demonstrated against Gram-negative aeromonads, counts of which were significantly reduced (P < 0.001). After 14 days application of CCM 8558, a tendency towards increased phagocytic activity (PA) was measured; PA value was 73.13% ± 8.55 on average at day 0/1; at day 14, it was 75.11 ± 8.66%. Cellulolytic, xylanolytic and pectinolytic activity in horse faeces was significantly increased (P < 0.001) at day 14 (after CCM 8558 application) and amylolytic activity as well (P < 0.01) compared to day 0/1. Inulolytic activity increased with mathematical difference 1.378. Dry matter value reached 20.81 ± 2.29% on average at day 0/1; at day 14, it was 20.77 ± 2.59% (P = 0.9725). Biochemical parameters were influenced mostly in the physiological range. These results achieved after application of CCM 8558 in horses are original, giving us further opportunity to continue these studies, to measure additional parameters and to show the benefits of CCM 8558 application in horses.