首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1726篇
  免费   97篇
  2023年   10篇
  2022年   27篇
  2021年   43篇
  2020年   31篇
  2019年   43篇
  2018年   64篇
  2017年   56篇
  2016年   67篇
  2015年   103篇
  2014年   105篇
  2013年   168篇
  2012年   163篇
  2011年   147篇
  2010年   87篇
  2009年   78篇
  2008年   96篇
  2007年   77篇
  2006年   83篇
  2005年   48篇
  2004年   47篇
  2003年   71篇
  2002年   46篇
  2001年   10篇
  2000年   10篇
  1999年   12篇
  1998年   9篇
  1997年   11篇
  1996年   7篇
  1995年   13篇
  1994年   5篇
  1993年   7篇
  1992年   10篇
  1991年   9篇
  1990年   7篇
  1989年   6篇
  1988年   5篇
  1987年   10篇
  1986年   2篇
  1985年   4篇
  1984年   3篇
  1983年   4篇
  1982年   2篇
  1981年   2篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1974年   2篇
  1967年   1篇
  1965年   1篇
  1907年   1篇
排序方式: 共有1823条查询结果,搜索用时 150 毫秒
131.
Prospective cohort studies have found that prediagnostic circulating vitamin B6 is inversely associated with both risk of kidney cancer and kidney cancer prognosis. We investigated whether circulating concentrations of vitamin B6 at kidney cancer diagnosis are associated with risk of death using a case-cohort study of 630 renal cell carcinoma (RCC) patients. Blood was collected at the time of diagnosis, and vitamin B6 concentrations were quantified using LC-MS/MS. Hazard ratios (HR) and 95% confidence intervals (CI) were calculated using Cox regression models. After adjusting for stage, age, and sex, the hazard was 3 times lower among those in the highest compared to the lowest fourth of B6 concentration (HR4vs1 0.33, 95% CI [0.18, 0.60]). This inverse association was solely driven by death from RCC (HR4vs1 0.22, 95% CI [0.11, 0.46]), and not death from other causes (HR4vs1 0.89, 95% CI [0.35, 2.28], p-interaction = 0.008). These results suggest that circulating vitamin B6 could provide additional prognostic information for kidney cancer patients beyond that afforded by tumour stage.  相似文献   
132.
133.

Background

The AKT/mTORC1/S6K pathway is frequently overstimulated in breast cancer, constituting a promising therapeutic target. The benefit from mTOR inhibitors varies, likely as a consequence of tumour heterogeneity, and upregulation of several compensatory feed-back mechanisms. The mTORC1 downstream effectors S6K1, S6K2, and 4EBP1 are amplified and overexpressed in breast cancer, associated with a poor outcome and divergent endocrine treatment benefit. S6K1 and S6K2 share high sequence homology, but evidence of partly distinct biological functions is emerging. The aim of this work was to explore possible different roles and treatment target potentials of S6K1 and S6K2 in breast cancer.

Materials and methods

Whole-genome expression profiles were compared for breast tumours expressing high levels of S6K1, S6K2 or 4EBP1, using public datasets, as well as after in vitro siRNA downregulation of S6K1 and/or S6K2 in ZR751 breast cancer cells. In silico homology modelling of the S6K2 kinase domain was used to evaluate its possible structural divergences to S6K1.

Results

Genome expression profiles were highly different in S6K1 and S6K2 high tumours, whereas S6K2 and 4EBP1 profiles showed significant overlaps, both correlated to genes involved in cell cycle progression, among these the master regulator E2F1. S6K2 and 4EBP1 were inversely associated with IGF1 levels, and their prognostic value was shown to be restricted to tumours positive for IGFR and/or HER2. In vitro, S6K1 and S6K2 silencing resulted in upregulation of genes in the mTORC1 and mTORC2 complexes. Isoform-specific silencing also showed distinct patterns, e.g. S6K2 downregulation lead to upregulation of several cell cycle associated genes. Structural analyses of the S6K2 kinase domain showed unique structure patterns, deviating from those of S6K1, facilitating the development of isoform-specific inhibitors. Our data support emerging proposals of distinct biological features of S6K1 and S6K2, suggesting their importance as separate oncogenes and clinical markers, where specific targeting in different breast cancer subtypes could facilitate further individualised therapies.  相似文献   
134.

Background

HIV patients on antiretroviral therapy have shown elevated incidence of dyslipidemia, lipodystrophy, and cardiovascular disease (CVD). Most studies, however, focus on cohorts from developed countries, with less data available for these co-morbidities in Ethiopia and sub-Saharan Africa.

Methods

Adult HIV-negative (n = 36), treatment naïve (n = 51), efavirenz (EFV)-treated (n = 91), nevirapine (NVP)-treated (n = 95), or ritonavir-boosted lopinavir (LPV/r)-treated (n=44) subjects were recruited from Black Lion Hospital in Addis Ababa, Ethiopia. Aortic pressure, augmentation pressure, and pulse wave velocity (PWV) were measured via applanation tonometry and carotid intima-media thickness (cIMT) and carotid arterial stiffness, and brachial artery flow-mediated dilation (FMD) were measured via non-invasive ultrasound. Body mass index, waist-to-hip circumference ratio (WHR), skinfold thickness, and self-reported fat redistribution were used to quantify lipodystrophy. CD4+ cell count, plasma HIV RNA levels, fasting glucose, total-, HDL-, and LDL-cholesterol, triglycerides, hsCRP, sVCAM-1, sICAM-1, leptin and complete blood count were measured.

Results

PWV and normalized cIMT were elevate and FMD impaired in EFV- and LPV/r-treated subjects compared to NVP-treated subjects; normalized cIMT was also elevated and FMD impaired in the EFV- and LPV/r-treated subjects compared to treatment-naïve subjects. cIMT was not statistically different across groups. Treated subjects exhibited elevated markers of dyslipidemia, inflammation, and lipodystrophy. PWV was associated with age, current EFV and LPV/r used, heart rate, blood pressure, triglycerides, LDL, and hsCRP, FMD with age, HIV duration, WHR, and glucose, and cIMT with age, current EFV use, skinfold thickness, and blood pressure.

Conclusions

Current EFV- or LPV/r-treatment, but not NVP-treatment, correlated with elevated markers of atherosclerosis, which may involve mechanisms distinct from traditional risk factors.  相似文献   
135.
Cyclic 3′5′ adenosine monophosphate (cAMP)-dependent-protein kinase (PKA) signaling is a fundamental regulatory pathway for mediating cellular responses to hormonal stimuli. The pathway is activated by high-affinity association of cAMP with the regulatory subunit of PKA and signal termination is achieved upon cAMP dissociation from PKA. Although steps in the activation phase are well understood, little is known on how signal termination/resetting occurs. Due to the high affinity of cAMP to PKA (KD ∼ low nM), bound cAMP does not readily dissociate from PKA, thus begging the question of how tightly bound cAMP is released from PKA to reset its signaling state to respond to subsequent stimuli. It has been recently shown that phosphodiesterases (PDEs) can catalyze dissociation of bound cAMP and thereby play an active role in cAMP signal desensitization/termination. This is achieved through direct interactions with the regulatory subunit of PKA, thereby facilitating cAMP dissociation and hydrolysis. In this study, we have mapped direct interactions between a specific cyclic nucleotide phosphodiesterase (PDE8A) and a PKA regulatory subunit (RIα isoform) in mammalian cAMP signaling, by a combination of amide hydrogen/deuterium exchange mass spectrometry, peptide array, and computational docking. The interaction interface of the PDE8A:RIα complex, probed by peptide array and hydrogen/deuterium exchange mass spectrometry, brings together regions spanning the phosphodiesterase active site and cAMP-binding sites of RIα. Computational docking combined with amide hydrogen/deuterium exchange mass spectrometry provided a model for parallel dissociation of bound cAMP from the two tandem cAMP-binding domains of RIα. Active site coupling suggests a role for substrate channeling in the PDE-dependent dissociation and hydrolysis of cAMP bound to PKA. This is the first instance, to our knowledge, of PDEs directly interacting with a cAMP-receptor protein in a mammalian system, and highlights an entirely new class of binding partners for RIα. This study also highlights applications of structural mass spectrometry combined with computational docking for mapping dynamics in transient signaling protein complexes. Together, these results present a novel and critical role for phosphodiesterases in moderating local concentrations of cAMP in microdomains and signal resetting.  相似文献   
136.
137.
Celiac disease is characterized by the secretion of IgA-class autoantibodies that target tissue transglutaminase (tTG). It is now recognized that anti-tTG antibodies are functional and not mere bystanders in the pathogenesis of celiac disease. Here we report that interaction between anti-tTG antibodies and extracellular membrane-bound tTG inhibits peptide 31–43 (but not peptide 57–68) uptake by cells, thereby impairing the ability of p31–43 to drive Caco-2 cells into S-phase. This effect did not involve tTG catalytic activity. Because anti-tTG antibodies interfered with epidermal growth factor endocytosis, we assume that they exert their effect by reducing peptide 31–43 endocytosis. Our results suggest that cell-surface tTG plays a hitherto unknown role in the regulation of gliadin peptide uptake and endocytosis.  相似文献   
138.
Structurally diverse, sugar-modified, thymine-containing nucleoside phosphonic acids were evaluated for their ability to inhibit thymidine phosphorylase (TP, EC 2.4.2.4) purified from spontaneous T-cell lymphomas of an inbred Sprague-Dawley rat strain. From a large set of tested compounds, among them a number of pyrrolidine-based derivatives, 10 nucleotide analogues with IC50 values below 1 μM were selected. Out of them, four compounds strongly inhibited the enzyme with IC50 values lying in a range of 11–45 nM. These most potent compounds might be bi-substrate analogues.  相似文献   
139.
Mutations in a number of genes have been linked to inherited dilated cardiomyopathy (DCM). However, such mutations account for only a small proportion of the clinical cases emphasising the need for alternative discovery approaches to uncovering novel pathogenic mutations in hitherto unidentified pathways. Accordingly, as part of a large-scale N-ethyl-N-nitrosourea mutagenesis screen, we identified a mouse mutant, Python, which develops DCM. We demonstrate that the Python phenotype is attributable to a dominant fully penetrant mutation in the dynamin-1-like (Dnm1l) gene, which has been shown to be critical for mitochondrial fission. The C452F mutation is in a highly conserved region of the M domain of Dnm1l that alters protein interactions in a yeast two-hybrid system, suggesting that the mutation might alter intramolecular interactions within the Dnm1l monomer. Heterozygous Python fibroblasts exhibit abnormal mitochondria and peroxisomes. Homozygosity for the mutation results in the death of embryos midway though gestation. Heterozygous Python hearts show reduced levels of mitochondria enzyme complexes and suffer from cardiac ATP depletion. The resulting energy deficiency may contribute to cardiomyopathy. This is the first demonstration that a defect in a gene involved in mitochondrial remodelling can result in cardiomyopathy, showing that the function of this gene is needed for the maintenance of normal cellular function in a relatively tissue-specific manner. This disease model attests to the importance of mitochondrial remodelling in the heart; similar defects might underlie human heart muscle disease.  相似文献   
140.
The aim of this study was to estimate genetic diversity and assess its importance for plant fitness in a species belonging to the most endangered species in Europe, Dracocephalum austriacum L., and to select the most valuable populations for conservation of genetic diversity within the species in the studied regions. We analyzed allozyme variation of 12 populations in three distinct regions (Czech Karst, Moravia and Slovak Karst) in Central Europe. The results showed high genetic diversity within populations (80.14%) and relatively low differentiation among populations within regions (9.42%) and between regions (10.45%). Seed production was significantly higher in larger, genetically more diverse and less inbred populations. The results suggest that genetic diversity has important effect on seed production in this species and thus can be expected to have strong direct consequences for plant fitness and vitality of the whole populations. They also show large variation in genetic diversity between populations and indicate which populations should get a priority in attempts to conserve all the genetic diversity within the region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号