首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5772篇
  免费   466篇
  国内免费   5篇
  2023年   34篇
  2022年   76篇
  2021年   149篇
  2020年   87篇
  2019年   100篇
  2018年   168篇
  2017年   132篇
  2016年   181篇
  2015年   278篇
  2014年   311篇
  2013年   365篇
  2012年   479篇
  2011年   493篇
  2010年   259篇
  2009年   265篇
  2008年   342篇
  2007年   349篇
  2006年   335篇
  2005年   274篇
  2004年   245篇
  2003年   248篇
  2002年   214篇
  2001年   46篇
  2000年   46篇
  1999年   43篇
  1998年   41篇
  1997年   37篇
  1996年   29篇
  1995年   28篇
  1994年   29篇
  1993年   27篇
  1992年   30篇
  1991年   21篇
  1990年   25篇
  1989年   25篇
  1988年   14篇
  1987年   18篇
  1986年   27篇
  1985年   27篇
  1984年   30篇
  1983年   26篇
  1982年   25篇
  1981年   19篇
  1980年   13篇
  1979年   14篇
  1978年   19篇
  1977年   15篇
  1976年   16篇
  1974年   13篇
  1965年   11篇
排序方式: 共有6243条查询结果,搜索用时 10 毫秒
931.
The plant pathogen Pseudomonas syringae secretes multiple effectors that modulate plant defenses. Some effectors trigger defenses due to specific recognition by plant immune complexes, whereas others can suppress the resulting immune responses. The HopZ3 effector of P. syringae pv. syringae B728a (PsyB728a) is an acetyltransferase that modifies not only components of plant immune complexes, but also the Psy effectors that activate these complexes. In Arabidopsis, HopZ3 acetylates the host RPM1 complex and the Psy effectors AvrRpm1 and AvrB3. This study focuses on the role of HopZ3 during tomato infection. In Psy-resistant tomato, the main immune complex includes PRF and PTO, a RIPK-family kinase that recognizes the AvrPto effector. HopZ3 acts as a virulence factor on tomato by suppressing AvrPto1Psy-triggered immunity. HopZ3 acetylates AvrPto1Psy and the host proteins PTO, SlRIPK and SlRIN4s. Biochemical reconstruction and site-directed mutagenesis experiments suggest that acetylation acts in multiple ways to suppress immune signaling in tomato. First, acetylation disrupts the critical AvrPto1Psy-PTO interaction needed to initiate the immune response. Unmodified residues at the binding interface of both proteins and at other residues needed for binding are acetylated. Second, acetylation occurs at residues important for AvrPto1Psy function but not for binding to PTO. Finally, acetylation reduces specific phosphorylations needed for promoting the immune-inducing activity of HopZ3’s targets such as AvrPto1Psy and PTO. In some cases, acetylation competes with phosphorylation. HopZ3-mediated acetylation suppresses the kinase activity of SlRIPK and the phosphorylation of its SlRIN4 substrate previously implicated in PTO-signaling. Thus, HopZ3 disrupts the functions of multiple immune components and the effectors that trigger them, leading to increased susceptibility to infection. Finally, mass spectrometry used to map specific acetylated residues confirmed HopZ3’s unusual capacity to modify histidine in addition to serine, threonine and lysine residues.  相似文献   
932.
Various cellulose-2,3-bis-arylcarbamate-6-O-arylesters and cellulose-2,3-bis-arylester-6-O-arylcarbamates, designed to test the possible combined effects of the known tris-arylcarbamate and tris-arylester classes, were synthesized with high regioselectivity at O-C(6), and their use as CSP s in liquid chromatography for enantiomeric separations was investigated. The separations obtained with the synthesized CSP s were compared to the separations achieved on a self-packed reference column, consisting of cellulose-tris-(3,5-dimethylphenyl-carbamate) as CSP standard. Among the synthesized, regioselectively substituted cellulose derivatives, 2,3-bis-O-(3,5-dimethylphenylcarbamate)-6-O-benzoate-cellulose and 2,3-bis-O-(benzoate)-6-O-(3,5-dichlorophenylcarbamate)-cellulose gave the best CSP s for the separation of the test racemates. CSP s from regioselectively substituted cellulose derivatives seem to exhibit higher selectivities than cellulose-tris-(3,5-dimethylphenylcarbamate) for certain classes of racemic compounds. Chirality 10:294–306, 1998. © 1998 Wiley-Liss, Inc.  相似文献   
933.
The proliferative response of hematopoietic cells is regulated by many factors, including the presence and type of growth factors, the cellular microenvironment, and the physiochemical conditions prevailing in the tissue milieu. A process fundamental to all cells is the regulation of the intracellular acid-base conditions. One of the mechanisms by which intracellular pH (pHi) is regulated is through the sodium/hydrogen exchanger, a ubiquitous membrane protein which exploits the intra- and extracellular sodium ion gradient to drive hydrogen ions out of the cell. However, activation of the exchanger via mitogenic and nonmitogenic signals leads to an increase in pHi which, in turn, may directly or indirectly result in a proliferative response. It has been shown that interaction of fibronectin with its integrin receptor subunits α4 and α5 can result in activation of the Na+/H+ exchanger. In this report, we demonstrate that when mouse bone marrow cells are physically brought together in a preculture system we designate as high cell density culture (HCDC), in a small volume and at the same cellularity as that in the marrow, hematopoietic stem and progenitor cell populations are stimulated with no additional stimulation in the presence of growth factors. Neutralizing antibodies to the growth factors added to HCDC had little, if any, effect on the degree of stimulation. However, when antibodies to fibronectin or the α4 integrin subunit were added to HCDC, inhibition was observed, indicating that the observed hematopoietic stimulation occurred via the fibronectin-integrin pathway. Addition of 5 μM 5-(N,N-hexamethylene) amiloride (5-HMA), a specific inhibitor of the Na+/H+ exchanger, also resulted in inhibition of in vitro hematopoiesis. Since the exchanger was implicated, we then measured the pHi of normal and HCDC-treated bone marrow cells in the absence and presence of 5-HMA by flow cytometry using the fluorescent pH-sensitive indicator, carboxy SNARF-1 AM. It was found that cells subjected to HCDC exhibited a higher pHi than normal fresh cells. In each case, the pHi was lowered in the presence of 5-HMA. Furthermore, addition of antibodies to fibronectin or the α4 integrin subunit to HCDC also reduced the pHi to a similar level to that found for 5-HMA. Our results demonstrate, for the first time, that a hematopoietic stem and progenitor cell proliferative response can be initiated by activation of the Na+/H+ exchanger, leading to an increase in pHi, via cell-cell interaction through the fibronectin-integrin pathway. This pathway could, therefore, be significant not only in normal hematopoietic regulation, but also under pathophysiological conditions. J. Cell. Physiol. 177:109–122, 1998. © 1998 Wiley-Liss, Inc.  相似文献   
934.
Both enantiomers of 2-methyl-3-oxo-3,4-dihydro-2H-1,4-benzoxazine-2-carboxylic acid 2 and 2,4-dimethyl-3-oxo-3,4-dihydro-2H-1,4-benzoxazine-2-carboxylic acid 3 were prepared via resolution of the corresponding racemic carboxylic acids with (R)- and (S)-1-phenylethylamine, respectively. Absolute configuration of (−)-(R)-2-methyl-3-oxo-3,4-dihydro-2H-1,4-benzoxazine-2-carboxylic acid was determined by X-ray crystallography. Curtius rearrangement of acyl azides prepared from enantiomers of these heterocyclic carboxylic acids carried out in benzyl alcohol afforded enantiomers of the corresponding benzyl carbamates, which upon hydrogenolysis gave racemic 2-amino-2-methyl-3,4-dihydro-2H-1,4-benzoxazin-3-one 4 and 2-amino-2,4-dimethyl-3,4-dihydro-2H-1,4h-benzoxazin-3-one 5. Chirality 10:791–799, 1998. © 1998 Wiley-Liss, Inc.  相似文献   
935.
Aminoacyl tRNA synthetases are enzymes that specifically attach amino acids to cognate tRNAs for use in the ribosomal stage of translation. For many aminoacyl tRNA synthetases, the required level of amino acid specificity is achieved either by specific hydrolysis of misactivated aminoacyl-adenylate intermediate (pre-transfer editing) or by hydrolysis of the mischarged aminoacyl-tRNA (post-transfer editing). To investigate the mechanism of post-transfer editing of alanine by prolyl-tRNA synthetase from the pathogenic bacteria Enterococcus faecalis, we used molecular modeling, molecular dynamic simulations, quantum mechanical (QM) calculations, site-directed mutagenesis of the enzyme, and tRNA modification. The results support a new tRNA-assisted mechanism of hydrolysis of misacylated Ala-tRNAPro. The most important functional element of this catalytic mechanism is the 2′-OH group of the terminal adenosine 76 of Ala-tRNAPro, which forms an intramolecular hydrogen bond with the carbonyl group of the alanine residue, strongly facilitating hydrolysis. Hydrolysis was shown by QM methods to proceed via a general acid-base catalysis mechanism involving two functionally distinct water molecules. The transition state of the reaction was identified. Amino acid residues of the editing active site participate in the coordination of substrate and both attacking and assisting water molecules, performing the proton transfer to the 3′-O atom of A76.  相似文献   
936.
937.
In this study, we re‐examine two species of freshwater gastropods of the genus Radix Montfort, 1810 (family Lymnaeidae), endemic to the geothermal springs in the Lake Baikal region in the southern part of eastern Siberia — Lymnaea (Radix) hakusyensis Kruglov et Starobogatov, 1989, and Lymnaea (Radix) thermobaicalica Kruglov et Starobogatov, 1989. The alleged species status of these endemics has been re‐assessed by means of an integrative approach combining molecular genetic taxonomy techniques with the traditional methods based on shell and soft body morphology. Phylogenetic reconstructions were made using both mitochondrial (COI) and nuclear (ITS2) DNA markers. We used topotypic samples of both species and specimens sampled from other sites around Lake Baikal. The results demonstrate that the two endemic species are only synonyms of a widespread Holarctic species, Radix auricularia (Linnaeus, 1758), and represent its intraspecific morph (ecotype) adapted to living in thermal springs. A new synonymy is proposed: Thermoradix Kruglov et Starobogatov, 1989 = Radix Montfort, 1810 (syn. n.).  相似文献   
938.
939.
The Cenomanian–Turonian boundary (CTB) in the ?i?arija Mountain region (northern Istria, Croatia) is characterized by calcisphere limestone successions with a firmground and glauconite horizon, bioturbated intervals, tempestites, and slumped structures as well as microbially laminated and organic-rich interbeds deposited in the northwestern part of the intra-Tethyan Adriatic Carbonate Platform (AdCP). Compilation of the results from three studied sections (Vodice–Jelovica, Martinjak and Planik) of litho-, bio-, and microfacies analyses, X-ray diffraction, SEM, EDS, and stable isotope analyses allowed reconstruction of marine paleoenvironmental conditions during this time period. Shallow-marine carbonate deposits of the Milna Formation underlie a drowned-platform succession of the Sveti (Sv.) Duh Formation. The contact between these two formations is sharp and commonly marked by slumped deposits. The Sv. Duh Formation consists of about 100 m of calcisphere wackestone enriched in organic matter. The results of preliminary δ13C and δ18O stable isotope analyses indicate the influence of the global Oceanic Anoxic Event (OAE2) on the deposition of this carbonate succession. Anoxic and hypoxic conditions in the water column lead to major changes in the shallow-marine carbonate system of the AdCP. Numerous benthic foraminifera declined during that time, but planktonic foraminifera and calcareous dinoflagellates diversified and expanded greatly. The results of this research provide new insights into the character of the CTB interval in this part of the Tethyan realm. Local and regional synsedimentary tectonics combined with global upper Cretaceous sea-level dynamics allows the correlation of the investigated deeper-marine lithostratigraphic units with OAE2.  相似文献   
940.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号