首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29745篇
  免费   2279篇
  国内免费   224篇
  2023年   230篇
  2022年   357篇
  2021年   850篇
  2020年   591篇
  2019年   650篇
  2018年   892篇
  2017年   772篇
  2016年   1068篇
  2015年   1502篇
  2014年   1584篇
  2013年   1967篇
  2012年   2224篇
  2011年   2148篇
  2010年   1340篇
  2009年   1220篇
  2008年   1584篇
  2007年   1488篇
  2006年   1332篇
  2005年   1117篇
  2004年   1092篇
  2003年   943篇
  2002年   868篇
  2001年   704篇
  2000年   622篇
  1999年   542篇
  1998年   272篇
  1997年   176篇
  1996年   180篇
  1995年   202篇
  1994年   165篇
  1993年   151篇
  1992年   283篇
  1991年   297篇
  1990年   225篇
  1989年   228篇
  1988年   208篇
  1987年   186篇
  1986年   172篇
  1985年   184篇
  1984年   160篇
  1983年   124篇
  1982年   93篇
  1981年   96篇
  1980年   90篇
  1979年   109篇
  1978年   109篇
  1977年   78篇
  1975年   84篇
  1974年   69篇
  1973年   66篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
901.
Recently, we reported a novel proteomics quantitation scheme termed “combined precursor isotopic labeling and isobaric tagging (cPILOT)” that allows for the identification and quantitation of nitrated peptides in as many as 12–16 samples in a single experiment. cPILOT offers enhanced multiplexing and posttranslational modification specificity, however excludes global quantitation for all peptides present in a mixture and underestimates reporter ion ratios similar to other isobaric tagging methods due to precursor co‐isolation. Here, we present a novel chemical workflow for cPILOT that can be used for global tagging of all peptides in a mixture. Specifically, through low pH precursor dimethylation of tryptic or LysC peptides followed by high pH tandem mass tags, the same reporter ion can be used twice in a single experiment. Also, to improve triple‐stage mass spectrometry (MS3) data acquisition, a selective MS3 method that focuses on product selection of the y1 fragment of lysine‐terminated peptides is incorporated into the workflow. This novel cPILOT workflow has potential for global peptide quantitation that could lead to enhanced sample multiplexing and increase the number of quantifiable spectra obtained from MS3 acquisition methods.  相似文献   
902.
The effect of post-thaw incubation (0 vs. 5 h at 15 °C) and straw size (5 vs. 0.5 ml) on motility, acrosomal integrity and in vitro fertilizing (IVF) capacity of cryopreserved boar spermatozoa was studied. In samples assessed immediately after thawing, no differences were found between the two straw sizes. After 5 h post-thaw incubation, all parameters, except polyspermy, decreased and, spermatozoa packaged in 5 ml straws showed better functional and IVF parameters than these in 0.5 ml straws.  相似文献   
903.
We show that the chemotactic movements of colonies of the starving amoeba Dictyostelium discoideum are driven by a force that depends on both the direction of propagation (directional sensing) of reaction-diffusion chemotactic waves and on the gradient of the concentration of the chemoattractant, solving the chemotactic wave paradox. It is shown that the directional sensing of amoebae is due to the sensitivity of the cells to the time variation of the concentration of the chemoattractant combined with its spatial gradient. It is also shown that chemotaxis exclusively driven by local concentration gradient leads to unstable local motion, preventing cells from aggregation. These findings show that the formation of mounds, which initiate multicellularity in Dictyostelium discoideum, is caused by the sensitivity of the amoebae due to three factors, namely, to the direction of propagation of the chemoattractant, to its spatial gradient, and to the emergence of cAMP “emitting centres”, responsible for the local accumulation of the amoebae.  相似文献   
904.
905.
Central giant cell lesions (CGCLs) are uncommon benign jaw lesions with uncertain etiology and a variable clinical behavior. In neoplasms, alterations in molecules involved in the G1/S checkpoint are frequently found. Loss of p16INK4a expression or overexpression of cyclin D1 may stimulate cell proliferation. The purpose of this study was to analyze CCND1 gene amplification and the expression of p16INK4a in CGCLs. Structural analysis of the CCND1 was performed using chromogenic in situ hybridization. Immmunohistochemistry was used to identify p16INK4a protein levels. Statistical analysis correlated the two biomarkers with clinical behavior and between each other. Twenty-four lesions were included, being 11 aggressive and 13 non-aggressive. Moderate/high-level CCND1 amplification was found in 12 lesions. Also, immunoreactivity for p16INK4a was present in 12 cases, mainly in mononuclear cells. There was a significantly higher level of p16INK4a expression in mononuclear cells of non-aggressive lesions and lesions with moderate/high-level CCND1 amplification in mononuclear cells. It could be speculated that some CGCLs may develop as a true benign neoplasm. The higher expression of p16INK4a in non-aggressive lesions and in cases with moderate/high-level CCND1 amplification may show that these molecules have a role in CGCLs.  相似文献   
906.
New microbial genomes are sequenced at a high pace, allowing insight into the genetics of not only cultured microbes, but a wide range of metagenomic collections such as the human microbiome. To understand the deluge of genomic data we face, computational approaches for gene functional annotation are invaluable. We introduce a novel model for computational annotation that refines two established concepts: annotation based on homology and annotation based on phyletic profiling. The phyletic profiling-based model that includes both inferred orthologs and paralogs—homologs separated by a speciation and a duplication event, respectively—provides more annotations at the same average Precision than the model that includes only inferred orthologs. For experimental validation, we selected 38 poorly annotated Escherichia coli genes for which the model assigned one of three GO terms with high confidence: involvement in DNA repair, protein translation, or cell wall synthesis. Results of antibiotic stress survival assays on E. coli knockout mutants showed high agreement with our model''s estimates of accuracy: out of 38 predictions obtained at the reported Precision of 60%, we confirmed 25 predictions, indicating that our confidence estimates can be used to make informed decisions on experimental validation. Our work will contribute to making experimental validation of computational predictions more approachable, both in cost and time. Our predictions for 998 prokaryotic genomes include ∼400000 specific annotations with the estimated Precision of 90%, ∼19000 of which are highly specific—e.g. “penicillin binding,” “tRNA aminoacylation for protein translation,” or “pathogenesis”—and are freely available at http://gorbi.irb.hr/.  相似文献   
907.
The Ross-Macdonald model has dominated theory for mosquito-borne pathogen transmission dynamics and control for over a century. The model, like many other basic population models, makes the mathematically convenient assumption that populations are well mixed; i.e., that each mosquito is equally likely to bite any vertebrate host. This assumption raises questions about the validity and utility of current theory because it is in conflict with preponderant empirical evidence that transmission is heterogeneous. Here, we propose a new dynamic framework that is realistic enough to describe biological causes of heterogeneous transmission of mosquito-borne pathogens of humans, yet tractable enough to provide a basis for developing and improving general theory. The framework is based on the ecological context of mosquito blood meals and the fine-scale movements of individual mosquitoes and human hosts that give rise to heterogeneous transmission. Using this framework, we describe pathogen dispersion in terms of individual-level analogues of two classical quantities: vectorial capacity and the basic reproductive number, . Importantly, this framework explicitly accounts for three key components of overall heterogeneity in transmission: heterogeneous exposure, poor mixing, and finite host numbers. Using these tools, we propose two ways of characterizing the spatial scales of transmission—pathogen dispersion kernels and the evenness of mixing across scales of aggregation—and demonstrate the consequences of a model''s choice of spatial scale for epidemic dynamics and for estimation of , both by a priori model formulas and by inference of the force of infection from time-series data.  相似文献   
908.
The intestinal microbiota is a microbial ecosystem of crucial importance to human health. Understanding how the microbiota confers resistance against enteric pathogens and how antibiotics disrupt that resistance is key to the prevention and cure of intestinal infections. We present a novel method to infer microbial community ecology directly from time-resolved metagenomics. This method extends generalized Lotka–Volterra dynamics to account for external perturbations. Data from recent experiments on antibiotic-mediated Clostridium difficile infection is analyzed to quantify microbial interactions, commensal-pathogen interactions, and the effect of the antibiotic on the community. Stability analysis reveals that the microbiota is intrinsically stable, explaining how antibiotic perturbations and C. difficile inoculation can produce catastrophic shifts that persist even after removal of the perturbations. Importantly, the analysis suggests a subnetwork of bacterial groups implicated in protection against C. difficile. Due to its generality, our method can be applied to any high-resolution ecological time-series data to infer community structure and response to external stimuli.  相似文献   
909.
Natural genetic transformation is widely distributed in bacteria and generally occurs during a genetically programmed differentiated state called competence. This process promotes genome plasticity and adaptability in Gram-negative and Gram-positive bacteria. Transformation requires the binding and internalization of exogenous DNA, the mechanisms of which are unclear. Here, we report the discovery of a transformation pilus at the surface of competent Streptococcus pneumoniae cells. This Type IV-like pilus, which is primarily composed of the ComGC pilin, is required for transformation. We provide evidence that it directly binds DNA and propose that the transformation pilus is the primary DNA receptor on the bacterial cell during transformation in S. pneumoniae. Being a central component of the transformation apparatus, the transformation pilus enables S. pneumoniae, a major Gram-positive human pathogen, to acquire resistance to antibiotics and to escape vaccines through the binding and incorporation of new genetic material.  相似文献   
910.
Aflatoxins are produced by Aspergillus flavus and A. parasiticus in oil-rich seed and grain crops and are a serious problem in agriculture, with aflatoxin B1 being the most carcinogenic natural compound known. Sexual reproduction in these species occurs between individuals belonging to different vegetative compatibility groups (VCGs). We examined natural genetic variation in 758 isolates of A. flavus, A. parasiticus and A. minisclerotigenes sampled from single peanut fields in the United States (Georgia), Africa (Benin), Argentina (Córdoba), Australia (Queensland) and India (Karnataka). Analysis of DNA sequence variation across multiple intergenic regions in the aflatoxin gene clusters of A. flavus, A. parasiticus and A. minisclerotigenes revealed significant linkage disequilibrium (LD) organized into distinct blocks that are conserved across different localities, suggesting that genetic recombination is nonrandom and a global occurrence. To assess the contributions of asexual and sexual reproduction to fixation and maintenance of toxin chemotype diversity in populations from each locality/species, we tested the null hypothesis of an equal number of MAT1-1 and MAT1-2 mating-type individuals, which is indicative of a sexually recombining population. All samples were clone-corrected using multi-locus sequence typing which associates closely with VCG. For both A. flavus and A. parasiticus, when the proportions of MAT1-1 and MAT1-2 were significantly different, there was more extensive LD in the aflatoxin cluster and populations were fixed for specific toxin chemotype classes, either the non-aflatoxigenic class in A. flavus or the B1-dominant and G1-dominant classes in A. parasiticus. A mating type ratio close to 1∶1 in A. flavus, A. parasiticus and A. minisclerotigenes was associated with higher recombination rates in the aflatoxin cluster and less pronounced chemotype differences in populations. This work shows that the reproductive nature of the population (more sexual versus more asexual) is predictive of aflatoxin chemotype diversity in these agriculturally important fungi.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号