首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   1篇
  2018年   1篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   5篇
  2012年   3篇
  2011年   4篇
  2010年   3篇
  2009年   2篇
  2008年   2篇
  2006年   3篇
  2003年   1篇
  1999年   1篇
排序方式: 共有30条查询结果,搜索用时 218 毫秒
21.
In the present study mitochondrial respiratory function of fibroblasts from a patient affected by early-onset Parkinsonism carrying the homozygous W437X nonsense mutation in the PINK1 gene has been thoroughly characterized. When compared with normal fibroblasts, the patient’s fibroblast mitochondria exhibited a lower respiratory activity and a decreased respiratory control ratio with cellular ATP supply relying mainly on enhanced glycolytic production. The quantity, specific activity and subunit pattern of the oxidative phosphorylation complexes were normal. However, a significant decrease of the cellular cytochrome c content was observed and this correlated with a reduced cytochrome c oxidase in situ-activity. Measurement of ROS revealed in mitochondria of the patient’s fibroblasts enhanced O2•− and H2O2 production abrogated by inhibition of complex I. No change in the glutathione-based redox buffering was, however, observed. Special issue article in honor of Anna Maria Giuffrida-Stella.  相似文献   
22.
Modulation of anxiety through blockade of anandamide hydrolysis   总被引:22,自引:0,他引:22  
The psychoactive constituent of cannabis, Delta(9)-tetrahydrocannabinol, produces in humans subjective responses mediated by CB1 cannabinoid receptors, indicating that endogenous cannabinoids may contribute to the control of emotion. But the variable effects of Delta(9)-tetrahydrocannabinol obscure the interpretation of these results and limit the therapeutic potential of direct cannabinoid agonists. An alternative approach may be to develop drugs that amplify the effects of endogenous cannabinoids by preventing their inactivation. Here we describe a class of potent, selective and systemically active inhibitors of fatty acid amide hydrolase, the enzyme responsible for the degradation of the endogenous cannabinoid anandamide. Like clinically used anti-anxiety drugs, in rats the inhibitors exhibit benzodiazepine-like properties in the elevated zero-maze test and suppress isolation-induced vocalizations. These effects are accompanied by augmented brain levels of anandamide and are prevented by CB1 receptor blockade. Our results indicate that anandamide participates in the modulation of emotional states and point to fatty acid amide hydrolase inhibition as an innovative approach to anti-anxiety therapy.  相似文献   
23.
DS (Down's syndrome) is the most common human aneuploidy associated with mental retardation and early neurodegeneration. Mitochondrial dysfunction has emerged as a crucial factor in the pathogenesis of numerous neurological disorders including DS, but the cause of mitochondrial damage remains elusive. In the present study, we identified new molecular events involved in mitochondrial dysfunction which could play a role in DS pathogenesis. We analysed mitochondrial respiratory chain function in DS-HSFs (Down's syndrome human foetal skin fibroblasts; human foetal skin fibroblasts with chromosome 21 trisomy) and found a selective deficit in the catalytic efficiency of mitochondrial complex I. The complex I deficit was associated with a decrease in cAMP-dependent phosphorylation of the 18 kDa subunit of the complex, due to a decrease in PKA (protein kinase A) activity related to reduced basal levels of cAMP. Consistently, exposure of DS-HSFs to db-cAMP (dibutyryl-cAMP), a membrane-permeable cAMP analogue, stimulated PKA activity and consequently rescued the deficit of both the cAMP-dependent phosphorylation and the catalytic activity of complex I; conversely H89, a specific PKA inhibitor, suppressed these cAMP-dependent activations. Furthermore, in the present paper we report a 3-fold increase in cellular levels of ROS (reactive oxygen species), in particular superoxide anion, mainly produced by DS-HSF mitochondria. ROS accumulation was prevented by db-cAMP-dependent activation of complex I, suggesting its involvement in ROS production. Taken together, the results of the present study suggest that the drastic decrease in basal cAMP levels observed in DS-HSFs participates in the complex I deficit and overproduction of ROS by DS-HSF mitochondria.  相似文献   
24.
The disease classification neurodegeneration with brain iron accumulation (NBIA) comprises a clinically and genetically heterogeneous group of progressive neurodegenerative disorders characterized by brain iron deposits in the basal ganglia. For about half of the cases, the molecular basis is currently unknown. We used homozygosity mapping followed by candidate gene sequencing to identify a homozygous 11 bp deletion in the orphan gene C19orf12. Mutation screening of 23 ideopathic NBIA index cases revealed two mutated alleles in 18 of them, and one loss-of-function mutation is the most prevalent. We also identified compound heterozygous missense mutations in a case initially diagnosed with Parkinson disease at age 49. Psychiatric signs, optic atrophy, and motor axonal neuropathy were common findings. Compared to the most prevalent NBIA subtype, pantothenate kinase associated neurodegeneration (PKAN), individuals with two C19orf12 mutations were older at age of onset and the disease progressed more slowly. A polyclonal antibody against the predicted membrane spanning protein showed a mitochondrial localization. A histopathological examination in a single autopsy case detected Lewy bodies, tangles, spheroids, and tau pathology. The mitochondrial localization together with the immunohistopathological findings suggests a pathomechanistic overlap with common forms of neurodegenerative disorders.  相似文献   
25.
26.
Molecular diagnosis of mitochondrial disorders is challenging because of extreme clinical and genetic heterogeneity. By exome sequencing, we identified three different bi-allelic truncating mutations in TANGO2 in three unrelated individuals with infancy-onset episodic metabolic crises characterized by encephalopathy, hypoglycemia, rhabdomyolysis, arrhythmias, and laboratory findings suggestive of a defect in mitochondrial fatty acid oxidation. Over the course of the disease, all individuals developed global brain atrophy with cognitive impairment and pyramidal signs. TANGO2 (transport and Golgi organization 2) encodes a protein with a putative function in redistribution of Golgi membranes into the endoplasmic reticulum in Drosophila and a mitochondrial localization has been confirmed in mice. Investigation of palmitate-dependent respiration in mutant fibroblasts showed evidence of a functional defect in mitochondrial β-oxidation. Our results establish TANGO2 deficiency as a clinically recognizable cause of pediatric disease with multi-organ involvement.  相似文献   
27.
The Tim23 protein is the key component of the mitochondrial import machinery. It locates to the inner mitochondrial membrane and its own import is dependent on the DDP1/TIM13 complex. Mutations in human DDP1 cause the Mohr-Tranebjaerg syndrome (MTS/DFN-1; OMIM #304700), which is one of the two known human diseases of the mitochondrial protein import machinery. We created a Tim23 knockout mouse from a gene trap embryonic stem cell clone. Homozygous Tim23 mice were not viable. Heterozygous F1 mutants showed a 50% reduction of Tim23 protein in Western blot, a neurological phenotype and a markedly reduced life span. Haploinsufficiency of the Tim23 mutation underlines the critical role of the mitochondrial import machinery for maintaining mitochondrial function.  相似文献   
28.
Malignant Pleural Mesothelioma (MMe) is a rare but increasingly prevalent, highly aggressive cancer with poor prognosis. The aetiology of MMe is essentially a function of previous exposure to asbestos fibres, which are considered to be an early‐stage carcinogen. Asbestos is toxic to human mesothelial cells (HMCs), that activate the nuclear enzyme poly(ADP‐ribose) polymerase‐1 (PARP1) to repair DNA. The targeting of PARP1 is showing considerable potential for delivering selective tumour cell kill while sparing normal cells, and offers a scientifically rational clinical application. We investigated PARP1 expression in normal mesothelial and MMe tissues samples. Immunohistochemical analysis revealed low PARP1 staining in peritumoural mesothelium. As opposite, a progressive increase in epithelioid and in the most aggressive sarcomatoid MMe tissues was evident. In MMe cell lines, we correlated increased PARP1 expression to sensitivity to its inhibitor CO‐338 and demonstrated that CO‐338 significantly reduced cell viability as single agent and was synergistic with cis‐platin. Interestingly, we described a new correlation between PARP1 and the AKT/mTOR axis regulated by SIRT1. SIRT1 has a role in the modulation of AKT activation and PARP1 has been described to be a gatekeeper for SIRT1 activity by limiting NAD+ availability. Here, we firstly demonstrate an inverse correlation between AKT acetylation and phosphorylation modulated by SIRT1 in MMe cells treated with CO‐338. In conclusion, this study demonstrates that PARP1 overexpression defines increased responsiveness to its inhibition, then these results imply that a substantial fraction of patients could be candidates for therapy with PARP inhibitors.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号