首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   301篇
  免费   20篇
  2022年   2篇
  2021年   3篇
  2020年   7篇
  2019年   4篇
  2018年   3篇
  2017年   4篇
  2015年   6篇
  2014年   9篇
  2013年   7篇
  2012年   18篇
  2011年   13篇
  2010年   10篇
  2009年   8篇
  2008年   11篇
  2007年   16篇
  2006年   15篇
  2005年   14篇
  2004年   14篇
  2003年   20篇
  2002年   15篇
  2001年   6篇
  2000年   5篇
  1999年   5篇
  1998年   2篇
  1997年   8篇
  1996年   6篇
  1995年   5篇
  1994年   8篇
  1993年   2篇
  1992年   6篇
  1991年   5篇
  1990年   7篇
  1989年   7篇
  1988年   7篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   5篇
  1983年   5篇
  1982年   5篇
  1981年   1篇
  1980年   4篇
  1979年   1篇
  1978年   1篇
  1977年   5篇
  1976年   3篇
  1975年   1篇
  1974年   2篇
  1971年   1篇
  1969年   2篇
排序方式: 共有321条查询结果,搜索用时 31 毫秒
51.

Background

Hydrophobicity is an important attribute of bacteria that contributes to adhesion and biofilm formation. Hydrophobicity of Streptococcus pyogenes is primarily due to lipoteichoic acid (LTA) on the streptococcal surface but the mechanism(s) whereby LTA is retained on the surface is poorly understood. In this study, we sought to determine whether members of the M protein family consisting of Emm (M protein), Mrp (M-related protein), Enn (an M-like protein), and the streptococcal protective antigen (Spa) are involved in anchoring LTA in a manner that contributes to hydrophobicity of the streptococci and its ability to form biofilms.

Methodology/Principal Findings

Isogenic mutants defective in expression of emm, mrp, enn, and/or spa genes of eight different serotypes and their parental strains were tested for differences in LTA bound to surface proteins, LTA released into the culture media, and membrane-bound LTA. The effect of these mutations on the ability of streptococci to form a hydrophobic surface and to generate biofilms was also investigated. A recombinant strain overexpressing Emm1 was also engineered and similarly tested. The serotypes tested ranged from those that express only a single M protein gene to those that express two or three members of the M protein family. Overexpression of Emm1 led to enhanced hydrophobicity and biofilm formation. Inactivation of emm in those serotypes expressing only a single emm gene reduced biofilm formation, and protein-bound LTA on the surface, but did not alter the levels of membrane-bound LTA. The results were more varied in those serotypes that express two to three members of the M protein family.

Conclusions/Significance

Our findings suggest that the formation of complexes with members of the M protein family is a common mechanism for anchoring LTA on the surface in a manner that contributes to hydrophobicity and to biofilm formation in S. pyogenes, but these activities in some serotypes are dependent on a trypsin-sensitive protein(s) that remains to be identified. The need for interactions between LTA and M proteins may impose functional constraints that limit variations in the sequence of the M proteins, major virulence factors of S. pyogenes.  相似文献   
52.
Photosystem II (PSII) core complexes consist of CP47, CP43, D1, D2 proteins and of several low molecular weight integral membrane polypeptides, such as the chloroplast-encoded PsbE, PsbF, and PsbI proteins. To elucidate the function of PsbI in the photosynthetic process as well as in the biogenesis of PSII in higher plants, we generated homoplastomic knock-out plants by replacing most of the tobacco psbI gene with a spectinomycin resistance cartridge. Mutant plants are photoautotrophically viable under green house conditions but sensitive to high light irradiation. Antenna proteins of PSII accumulate to normal amounts, but levels of the PSII core complex are reduced by 50%. Bioenergetic and fluorescence studies uncovered that PsbI is required for the stability but not for the assembly of dimeric PSII and supercomplexes consisting of PSII and the outer antenna (PSII-LHCII). Thermoluminescence emission bands indicate that the presence of PsbI is required for assembly of a fully functional Q(A) binding site. We show that phosphorylation of the reaction center proteins D1 and D2 is light and redox-regulated in the wild type, but phosphorylation is abolished in the mutant, presumably due to structural alterations of PSII when PsbI is deficient. Unlike wild type, phosphorylation of LHCII is strongly increased in the dark due to accumulation of reduced plastoquinone, whereas even upon state II light phosphorylation is decreased in delta psbI. These data attest that phosphorylation of D1/D2, CP43, and LHCII is regulated differently.  相似文献   
53.
Geobacillus stearothermophilus T-6 is a thermophilic soil bacterium that has a 38-kb gene cluster for the utilization of arabinan, a branched polysaccharide that is part of the plant cell wall. The bacterium encodes a unique three-component regulatory system (araPST) that includes a sugar-binding lipoprotein (AraP), a histidine sensor kinase (AraS), and a response regulator (AraT) and lies adjacent to an ATP-binding cassette (ABC) arabinose transport system (araEGH). The lipoprotein (AraP) specifically bound arabinose, and gel mobility shift experiments showed that the response regulator, AraT, binds to a 139-bp fragment corresponding to the araE promoter region. Taken together, the results showed that the araPST system appeared to sense extracellular arabinose and to activate a specific ABC transporter for arabinose (AraEGH). The promoter regions of the arabinan utilization genes contain a 14-bp inverted repeat motif resembling an operator site for the arabinose repressor, AraR. AraR was found to bind specifically to these sequences, and binding was efficiently prevented in the presence of arabinose, suggesting that arabinose is the molecular inducer of the arabinan utilization system. The expression of the arabinan utilization genes was reduced in the presence of glucose, indicating that regulation is also mediated via a catabolic repression mechanism. The cluster also encodes a second putative ABC sugar transporter (AbnEFJ) whose sugar-binding lipoprotein (AbnE) was shown to interact specifically with linear and branched arabino-oligosaccharides. The final degradation of the arabino-oligosaccharides is likely carried out by intracellular enzymes, including two α-l-arabinofuranosidases (AbfA and AbfB), a β-l-arabinopyranosidase (Abp), and an arabinanase (AbnB), all of which are encoded in the 38-kb cluster.  相似文献   
54.
The synaptosomal metabolism of glutamine was studied under in vitro conditions that simulate depolarization in vivo. With [2-15N]glutamine as precursor, the [glutamine]i was diminished in the presence of veratridine or 50 mM KCl, but the total amounts of [15N]glutamate and [15N]aspartate formed were either equal to those of control incubations (veratridine) or higher (50 mM [KCl]). This suggests that depolarization decreases glutamine uptake and independently augments glutaminase activity. Omission of sodium from the medium was associated with low internal levels of glutamine which indicates that influx occurs as a charged Na(+)-amino acid complex. It is postulated that a reduction in membrane potential and a collapse of the Na+ gradient decrease the driving forces for glutamine accumulation and thus inhibit its uptake and enhance its release under depolarizing conditions. Inorganic phosphate stimulated glutaminase activity, particularly in the presence of calcium. At 2 mM or lower [phosphate] in the medium, calcium inhibited glutamine utilization and the production of glutamate, aspartate, and ammonia from glutamine. At a high (10 mM) medium [phosphate], calcium stimulated glutamine catabolism. It is suggested that a veratridine-induced increase in intrasynaptosomal inorganic phosphate is responsible for the enhancement of flux through glutaminase; calcium affects glutaminase indirectly by modulating the level of free intramitochondrial [phosphate]. Because phosphate also lowers the Km of glutaminase for glutamine, augmentation of the amino acid breakdown may occur even when depolarization lowers [glutamine]i. Reducing the intrasynaptosomal glutamate to 26 nmol/mg of protein had little effect on glutamine catabolism, but raising the pH to 7.9 markedly increased formation of glutamate and aspartate. It is concluded that phosphate and H+ are the major physiologic regulators of glutaminase activity.  相似文献   
55.
The role of the glutamate dehydrogenase reaction as a pathway of glutamate synthesis was studied by incubating synaptosomes with 5 mM 15NH4Cl and then utilizing gas chromatography-mass spectrometry to measure isotopic enrichment in glutamate and aspartate. The rate of formation of [15N]glutamate and [15N]aspartate from 5 mM 15NH4Cl was approximately 0.2 nmol/min/mg of protein, a value much less than flux through glutaminase (4.8 nmol/min/mg of protein) but greater than flux through glutamine synthetase (0.045 nmol/min/mg of protein). Addition of 1 mM 2-oxoglutarate to the medium did not affect the rate of [15N]glutamate formation. O2 consumption and lactate formation were increased in the presence of 5 mM NH3, whereas the intrasynaptosomal concentrations of glutamate and aspartate were unaffected. Treatment of synaptosomes with veratridine stimulated reductive amination of 2-oxoglutarate during the early time points. The production of ([15N]glutamate + [15N]aspartate) was enhanced about twofold in the presence of 5 mM beta-(+/-)-2-aminobicyclo [2.2.1]heptane-2-carboxylic acid, a known effector of glutamate dehydrogenase. Supplementation of the incubation medium with a mixture of unlabelled amino acids at concentrations similar to those present in the extracellular fluid of the brain had little effect on the intrasynaptosomal [glutamate] and [aspartate]. However, the enrichment in these amino acids was consistently greater in the presence of supplementary amino acids, which appeared to stimulate modestly the reductive amination of 2-oxoglutarate. It is concluded: (a) compared with the phosphate-dependent glutaminase reaction, reductive amination is a relatively minor pathway of synaptosomal glutamate synthesis in both the basal state and during depolarization; (b) NH3 toxicity, at least in synaptosomes, is not referable to energy failure caused by a depletion of 2-oxoglutarate in the glutamate dehydrogenase reaction; and (c) transamination is not a major mechanism of glutamate nitrogen production in nerve endings.  相似文献   
56.
In stroke and several neurodegenerative diseases, malfunction of glutamate (Glu) transporters causes Glu accumulation and triggers excitotoxicity. Many details on the cascade of events in the neurodegenerative process remain unclear. As molecular components of glutamatergic synapses are assembled in Caenorhabditis elegans and as many fundamental cellular processes are conserved from nematodes to humans, we studied Glu-induced necrosis in C. elegans and probed its genetic requirements. We combined Δglt-3 , a Glu transporter-null mutation, with expression of a constitutively active form of the alpha subunit of the G protein Gs. While neither Δglt-3 nor expression of the constitutively active form of the alpha subunit of the G protein Gs is severely toxic to C. elegans head interneurons, their combination induces extensive neurodegeneration. Δglt-3 -dependent neurodegeneration acts through Ca2+-permeable Glu receptors of the α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid (AMPA) subtype, requires calreticulin function, and is modulated by calcineurin and type-9 adenylyl cyclase (AC9). We further show that mammalian AC9 hyperactivates mammalian AMPA-receptors (AMPA-Rs) in a Xenopus oocyte expression system, supporting that the relationship between AMPA-Rs hyperactivation and AC9 might be conserved between nematodes and mammals. AMPA-Rs–AC9 synergism is thus critical for nematode excitotoxicity and could potentially be involved in some forms of mammalian neurodegeneration.  相似文献   
57.
Plasma membrane proteolipid (plasmolipin), which was originally isolated from kidney membranes, has also been shown to be present in brain. In this study, we examined the distribution of plasmolipin in brain regions, myelin, and oligodendroglial membranes. Immunoblot analysis of different brain regions revealed that plasmolipin levels were higher in regions rich in white matter. Plasmolipin was also detected in myelin, myelin subfractions, and oligodendroglial membranes. Immunocytochemical analysis of the cerebellum revealed that plasmolipin was localized in the myelinated tracts. Plasmolipin levels in myelin were enriched during five successive cycles of myelin purification, similar to the enrichment of myelin proteolipid apoprotein (PLP) and myelin basic protein (MBP). In contrast, levels of Na+,K(+)-ATPase and a 70-kDa protein were decreased. When myelin or white matter was extracted with chloroform/methanol, it contained, in addition to PLP, a significant amount of plasmolipin. Quantitative immunoblot analysis suggested that plasmolipin constitutes in the range of 2.2-4.8% of total myelin protein. Plasmolipin, purified from kidney membranes, was detected by silver stain on gels at 18 kDa and did not show immunological cross-reactivity with either PLP or MBP. Thus, it is concluded that plasmolipin is present in myelin, possibly as a component of the oligodendroglial plasma membrane, but is structurally and immunologically different from the previously characterized myelin proteolipids.  相似文献   
58.
Microtubule-associated protein MAP1B from neonatal rat brain was separated on sodium dodecyl sulfate-containing polyacrylamide gels into two isoforms (high and low MAP1B), both of which were recognized by a panel of monoclonal and polyclonal antibodies against MAP1B. In addition, SMI31, a monoclonal antibody directed against phosphorylated epitopes of the neurofilament proteins, showed phosphatase-sensitive reactivity against the high isoform of MAP1B. The antigenic relationship between the phosphorylated isoform of MAP1B and neurofilaments was confirmed by the reactivity of SMI31 with the immunoprecipitated MAP1B protein. After dephosphorylation of MAP1B with alkaline phosphatase, the higher-molecular-weight isoform of MAP1B was no longer detectable with phosphate-insensitive anti-MAP1B antibodies, whereas there was a significant increase in the immunoreactivity of the lower-molecular-weight MAP1B isoform. These data suggest that the structural microheterogeneity of MAP1B is due to differences in phosphorylation. The two isoforms were present in all brain regions of the young rat. During brain development, the general decrease in MAP1B levels was accompanied by changes in the relative amount of the two isoforms. In particular, the phosphorylated isoform of MAP1B decreased dramatically to almost undetectable levels in adult brain. This conclusion was further supported by immunoblotting analysis that showed the disappearance of phosphorylated epitopes of MAP1B early during brain development. In addition, dephosphorylation experiments demonstrated the phosphatase sensitivity of the phosphorylated isoform throughout development.  相似文献   
59.
Summary We investigated the effects of human placental scatter factor (hSF), mouse scatter factor (mSF) and recombinant human hepatocyte growth factor (HGF) on motility and morphology of individual Madin-Darby canine kidney cells using a computerized cell tracking system. All three factors increased the velocity of individual cells and the ratio of moving to stationary cells. Similarly, all three factors caused changes in morphologic features of cells, leading to increased area, flatness, and polarity. Increases in area and flatness but not polarity were slightly greater with HGF than with hSF or mSF. These results suggest that SFs and HGF have similar effects on motility and morphology of isolated epithelial cells.  相似文献   
60.
Keyhole limpet hemocyanin (KLH) is widely used as a carrier molecule to enhance immune responses to administered antigens, and for immunotherapy of bladder and renal carcinoma. In the present study we show, using lectin and antibody binding studies, that native KLH contains Gal(1–3)GalNAc-bearing oligosaccharides, and that immunization with KLH in Lewis rats induces the production of anti-Gal(1–3)GalNAc antibodies. This might explain the beneficial effect of KLH in bladder cancers that express crossreactive Gal(1–3)GalNAc determinants or the T antigen.Supported by NIH grant NS11766 and by the William Rosenwald Family Fund Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号