首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   612篇
  免费   50篇
  国内免费   1篇
  2022年   4篇
  2021年   8篇
  2020年   3篇
  2019年   7篇
  2018年   10篇
  2017年   4篇
  2016年   13篇
  2015年   20篇
  2014年   22篇
  2013年   29篇
  2012年   41篇
  2011年   26篇
  2010年   20篇
  2009年   13篇
  2008年   29篇
  2007年   34篇
  2006年   44篇
  2005年   30篇
  2004年   35篇
  2003年   39篇
  2002年   30篇
  2001年   17篇
  2000年   8篇
  1999年   19篇
  1998年   7篇
  1997年   4篇
  1996年   11篇
  1995年   3篇
  1994年   3篇
  1992年   13篇
  1991年   7篇
  1990年   9篇
  1989年   7篇
  1988年   7篇
  1987年   7篇
  1986年   5篇
  1985年   2篇
  1984年   7篇
  1983年   8篇
  1982年   12篇
  1981年   5篇
  1980年   6篇
  1979年   9篇
  1978年   3篇
  1977年   2篇
  1976年   3篇
  1975年   2篇
  1974年   2篇
  1967年   2篇
  1962年   2篇
排序方式: 共有663条查询结果,搜索用时 265 毫秒
521.

Background  

Glucosamine is known as a toxic agent for several malignant cell lines and transplanted tumors with little toxicity to normal host tissues. However, the mechanisms underlying anticancer activity of glucosamine are poorly understood. To study the mechanisms, the human prostate cancer DU145 cells were used for the model.  相似文献   
522.
The Wnt and Src pathways are widely used signal transduction pathways in development. β-catenin is utilized in both pathways, as a signal transducer and a component of the cadherin cell adhesion complex, respectively. A C. elegans β-catenin HMP-2 is involved in cell adhesion, but its signaling role has been unknown. Here, we report that in early embryogenesis HMP-2 acts as a signaling molecule in the Src signal. During early embryogenesis in C. elegans, the Wnt and Src pathways are redundantly involved in endoderm induction at the four-cell stage and spindle orientation in an ABar blastomere. RNAi experiments demonstrated that HMP-2 functions in the Src pathway, but in parallel with the Wnt pathway in these processes. HMP-2 localized at the cell boundaries and nuclei, and its localization at cell boundaries was negatively regulated by SRC-1. In addition, HMP-2 was Tyr-phosphorylated in a SRC-1-dependent manner in vivo. Taken together, we propose that HMP-2 functions downstream of the Src signaling pathway and contribute to endoderm induction and ABar spindle orientation, in parallel with the Wnt signaling pathway.  相似文献   
523.
We investigated the role of mitochondrial reactive oxygen species (ROS) in the response of macrophages to lipopolysaccharide (LPS) using RAW 264.7 cells and their ρ(o) cells lacking mitochondria. Mitochondrial density, respiratory activity and related proteins in ρ(o) cells were significantly lower than those in RAW cells. LPS rapidly stimulated mitochondrial ROS prior to cytokine secretion, such as TNF-α and IL-6, from RAW 264.7 cells by activating the MAPK pathway, while the response was attenuated in ρ(o) cells. Exposure of ρ(o) cells to H(2)O(2) partially restored the secretion of cytokines induced by LPS. These results suggest that mitochondrial density and/or the respiratory state contribute to intracellular oxidative stress, which is responsible for the stimulation of LPS-induced MAPK signaling to enhance cytokine release from macrophages.  相似文献   
524.

Background

Cilostazol(CLZ) has been used as a vasodilating anti-platelet drug clinically and demonstrated to inhibit proliferation of smooth muscle cells and effect on endothelial cells. However, the effect of CLZ on re-endothelialization including bone marrow (BM)-derived endothelial progenitor cell (EPC) contribution is unclear. We have investigated the hypothesis that CLZ might accelerate re-endothelialization with EPCs.

Methodology/Principal Findings

Balloon carotid denudation was performed in male Sprague-Dawley rats. CLZ group was given CLZ mixed feed from 2weeks before carotid injury. Control group was fed normal diet. CLZ accelerated re-endothelialization at 2 weeks after surgery and resulted in a significant reduction of neointima formation 4 weeks after surgery compared with that in control group. CLZ also increased the number of circulating EPCs throughout the time course. We examined the contribution of BM-derived EPCs to re-endothelialization by BM transplantation from Tie2/lacZ mice to nude rats. The number of Tie2-regulated X-gal positive cells on injured arterial luminal surface was increased at 2 weeks after surgery in CLZ group compared with that in control group. In vitro, CLZ enhanced proliferation, adhesion and migration activity, and differentiation with mRNA upregulation of adhesion molecule integrin αvβ3, chemokine receptor CXCR4 and growth factor VEGF assessed by real-time RT-PCR in rat BM-derived cultured EPCs. In addition, CLZ markedly increased the expression of SDF-1α that is a ligand of CXCR4 receptor in EPCs, in the media following vascular injury.

Conclusions/Significance

CLZ promotes EPC mobilization from BM and EPC recruitment to sites of arterial injury, and thereby inhibited neointima formation with acceleration of re-endothelialization with EPCs as well as pre-existing endothelial cells in a rat carotid balloon injury model. CLZ could be not only an anti-platelet agent but also a promising tool for endothelial regeneration, which is a key event for preventing atherosclerosis or restenosis after vascular intervention.  相似文献   
525.

Introduction

Rheumatoid arthritis (RA) is a systemic, chronic inflammatory disease influenced by both genetic and environmental factors, leading to joint destruction and functional impairment. Recently, a large-scaled GWAS meta-analysis using more than 37,000 Japanese samples were conducted and 13 RA susceptibility loci were identified. However, it is not clear whether these loci have significant impact on joint destruction or not. This is the first study focused on the 13 loci to investigate independent genetic risk factors for radiographic progression in the first five years from onset of RA.

Methods

Sharp/van der Heijde score of hands at 5-year disease duration, which represents joint damage, were measured retrospectively and used as an outcome variable in 865 Japanese RA patients. Genetic factors regarded as putative risk factors were RA-susceptible polymorphisms identified by the Japanese GWAS meta-analysis, including HLA-DRB1 (shared epitope, SE), rs2240340 (PADI4), rs2230926 (TNFAIP3), rs3093024 (CCR6), rs11900673 (B3GNT2), rs2867461 (ANXA3), rs657075 (CSF2), rs12529514 (CD83), rs2233434 (NFKBIE), rs10821944 (ARID5B), rs3781913 (PDE2A-ARAP1), rs2841277 (PLD4) and rs2847297 (PTPN2). These putative genetic risk factors were assessed by a stepwise multiple regression analysis adjusted for possible non-genetic risk factors: autoantibody positivity (anti-citrullinated peptide antibody [ACPA] and rheumatoid factor), history of smoking, gender and age at disease onset.

Results

The number of SE alleles (P = 0.002) and risk alleles of peptidyl arginine deiminase type IV gene (PADI4, P = 0.04) had significant impact on progressive joint destruction, as well as following non-genetic factors: ACPA positive (P = 0.0006), female sex (P = 0.006) and younger age of onset (P = 0.02).

Conclusions

In the present study, we found that PADI4 risk allele and HLA-DRB1 shared epitope are independent genetic risks for radiographic progression in Japanese rheumatoid arthritis patients. The results of this study give important knowledge of the risks on progressive joint damage in RA patients.  相似文献   
526.
Iron(II)/EDTA/ascorbate-mediated oxidative damage to specific amino acid residues (tryptophan) of serum albumin was studied. The active species generated by Fe(II)/EDTA/ascorbate preferred to react with tryptophan residues rather than histidine or other amino acids. The observation of preferential damage to tryptophan residues of the protein was fully suported by a model experiment using a tryptophan analogue. The reaction of Fe(II)/EDTA/ascorbate to the protein was significantly suppressed by mannitol and dimethysulfoxide, suggesting the participation of the hydroxyl radical generated via Fenton’s reaction. The result was supported by the hydroxyl radical assay using 2-deoxyribose.  相似文献   
527.
Because nitric oxide (NO) reacts with various molecules, such as hemeproteins, superoxide and thiols including glutathione (GSH) and cysteine residues in proteins, biological effects and metabolic fate of this gaseous radical are affected by these reactants. Although the lifetime of NO is short particularly under air atmospheric conditions (where the oxygen tension is unphysiologically high), it increases significantly under physiologically low oxygen concentrations. Because oxygen tensions in human body differ from one tissue to another and change depending on their metabolism, biological activity of NO in various tissues might be affected by local oxygen tensions. To elucidate the role of NO and related radicals in the regulation of circulation and energy metabolism, their effects on arterial resistance and energy metabolism in mitochondria, mammalian cells and enteric bacteria were studied under different oxygen tensions. Kinetic analysis revealed that NO-dependent generation of cGMP in resistance arteries and their relaxation were strongly enhanced by lowering oxygen tensions in the medium. NO reversibly suppressed the respiration and ATP synthesis of isolated mitochondria and intact cells particularly under low oxygen tensions. Kinetic analysis revealed that cross-talk between NO and superoxide generated in and around endothelial cells regulates arterial resistance particularly under physiologically low oxygen tensions. NO also inhibited the respiration and ATP synthesis of E. coli particularly under low oxygen tensions. Because concentrations of NO and H+ in gastric juice are high, most ingested bacteria are effectively killed in the stomach. However, the inhibitory effects of NO on the respiration and ATP synthesis of H. pylori are extremely small. Kinetic analysis revealed that H. pylori generates the superoxide radical thereby inhibiting the bactericidal action of NO in gastric juice. Based on such observations, critical roles of the cross-talk of NO, superoxide and molecular oxygen in the regulation of energy metabolism and survival of aerobic and microaerophilic organisms are discussed.  相似文献   
528.
Recent studies demonstrated that the generation of intracellular reactive oxygen species (ROS) was enhanced prior to the onset of mitochondrial membrane permeability transition (MPT), a critical step for the induction of DNA fragmentation and apoptosis. Although Ca2+ induces typical MPT that involves depolarization and swelling of mitochondria and finally releases cytochrome c into cytosol, the mechanism by which ROS induce MPT remains unclear. In the presence of inorganic phosphate, Ca2+ increased the oxygen consumption and ROS production by isolated mitochondria as determined by a chemiluminescence (CHL) method using L-012. Ca2+ increased the generation of H2O2 by some mechanism that was inhibited by cyclosporin A but not by superoxide dismutase (SOD) and trifluoperazine. Ca2+ decreased the content of free thiols in adenine nucleotide translocase (ANT) in mitochondrial membranes with concomitant increase in ROS generation. The presence of cyclosporin A, trifluoperazine, or SOD inhibited the Ca2+-induced increase of L-012 CHL and decrease in the free thiols of ANT. These results indicate that Ca2+ increases the generation of ROS which oxidize the free thiol groups in mitochondrial ANT, thereby inducing MPT to release cytochrome c.  相似文献   
529.
530.
Dipeptidyl peptidase 4 (DPP-4) inhibitors are used for the treatment of type-2 diabetes mellitus. Various synthetic inhibitors have been developed to date, and plants containing natural DPP-4 inhibitors have also been identified. Here, 13 plant samples were tested for their DPP-4 inhibitory activity. Macrocarpals A–C were isolated from Eucalyptus globulus through activity-guided fractionation and shown to be DPP-4 inhibitors. Of these, macrocarpal C showed the highest inhibitory activity, demonstrating an inhibition curve characterised by a pronounced increase in activity within a narrow concentration range. Evaluation of macrocarpal C solution by turbidity, nuclear magnetic resonance spectroscopy and mass spectrometry indicated its aggregation, which may explain the characteristics of the inhibition curve. These findings will be valuable for further study of potential small molecule DPP-4 inhibitors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号