首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   519篇
  免费   32篇
  国内免费   2篇
  553篇
  2023年   1篇
  2022年   2篇
  2021年   13篇
  2020年   1篇
  2019年   4篇
  2018年   9篇
  2017年   6篇
  2016年   9篇
  2015年   19篇
  2014年   15篇
  2013年   33篇
  2012年   52篇
  2011年   42篇
  2010年   24篇
  2009年   22篇
  2008年   43篇
  2007年   35篇
  2006年   37篇
  2005年   32篇
  2004年   24篇
  2003年   27篇
  2002年   27篇
  2001年   10篇
  2000年   6篇
  1999年   3篇
  1998年   8篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   4篇
  1991年   5篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   4篇
  1984年   2篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1978年   3篇
  1977年   1篇
  1975年   2篇
  1973年   1篇
  1969年   1篇
  1967年   1篇
排序方式: 共有553条查询结果,搜索用时 15 毫秒
31.
Glioblastoma (GBM) is among the most invasive and lethal of cancers, frequently infiltrating surrounding healthy tissue and giving rise to rapid recurrence. It is therefore critical to establish experimental model systems and develop therapeutic approaches that enhance anti-tumor immunity. In the current study, we have employed a newly developed murine glioma model to assess the efficacy of a novel picornavirus vaccination approach for the treatment of established tumors. The GL261-Quad system is a variation of the GL261 syngeneic glioma that has been engineered to expresses model T cell epitopes including OVA257–264. MRI revealed that both GL261 and GL261-Quad tumors display characteristic features of human gliomas such as heterogeneous gadolinium leakage and larger T2 weighted volumes. Analysis of brain-infiltrating immune cells demonstrated that GL261-Quad gliomas generate detectable CD8+ T cell responses toward the tumor-specific Kb:OVA257–264 antigen. Enhancing this response via a single intracranial or peripheral vaccination with picornavirus expressing the OVA257–264 antigen increased anti-tumor CD8+ T cells infiltrating the brain, attenuated progression of established tumors, and extended survival of treated mice. Importantly, the efficacy of the picornavirus vaccination is dependent on functional cytotoxic activity of CD8+ T cells, as the beneficial response was completely abrogated in mice lacking perforin expression. Therefore, we have developed a novel system for evaluating mechanisms of anti-tumor immunity in vivo, incorporating the GL261-Quad model, 3D volumetric MRI, and picornavirus vaccination to enhance tumor-specific cytotoxic CD8+ T cell responses and track their effectiveness at eradicating established gliomas in vivo.  相似文献   
32.
33.
The opioid receptor system in the central nervous system controls a number of physiological processes, most notably pain. However, most opioids currently available have a variety of side-effects as well as exhibiting tolerance. Tolerance is most likely to be a complex phenomenon, however, the role of receptor internalisation is thought to play a crucial role. In this study, we examined the role of aromaticity in ligand-mediated receptor internalisation of the mu-opioid receptor (MOPR). These studies show that the amount of receptor internalisation may be dependant on the amphiphilicity of the ligand. Specifically, deletion of the C-terminus aromatic residues of endomorphin 1, particularly tryptophan reduces receptor-mediated internalisation whilst the addition of tryptophan within the enkephalin sequence increases receptor internalisation and decreases tolerance.  相似文献   
34.
Yeast is capable of performing posttranslational modifications, such as N- or O-glycosylation. It has been demonstrated that N-glycans play critical biological roles in therapeutic glycoproteins by modulating pharmacokinetics and pharmacodynamics. However, N-glycan sites on recombinant glycoproteins produced in yeast can be underglycosylated, and hence, not completely occupied. Genomic homology analysis indicates that the Pichia pastoris oligosaccharyltransferase (OST) complex consists of multiple subunits, including OST1, OST2, OST3, OST4, OST5, OST6, STT3, SWP1, and WBP1. Monoclonal antibodies produced in P. pastoris show that N-glycan site occupancy ranges from 75–85 % and is affected mainly by the OST function, and in part, by process conditions. In this study, we demonstrate that N-glycan site occupancy of antibodies can be improved to greater than 99 %, comparable to that of antibodies produced in mammalian cells (CHO), by overexpressing Leishmania major STT3D (LmSTT3D) under the control of an inducible alcohol oxidase 1 (AOX1) promoter. N-glycan site occupancy of non-antibody glycoproteins such as recombinant human granulocyte macrophage colony-stimulating factor (rhGM-CSF) was also significantly improved, suggesting that LmSTT3D has broad substrate specificity. These results suggest that the glycosylation status of recombinant proteins can be improved by heterologous STT3 expression, which will allow for the customization of therapeutic protein profiles.  相似文献   
35.
The deleterious effects of H2O2 on the electron transport chain of yeast mitochondria and on mitochondrial lipid peroxidation were evaluated. Exposure to H2O2 resulted in inhibition of the oxygen consumption in the uncoupled and phosphorylating states to 69% and 65%, respectively. The effect of H2O2 on the respiratory rate was associated with an inhibition of succinate-ubiquinone and succinate-DCIP oxidoreductase activities. Inhibitory effect of H2O2 on respiratory complexes was almost completely recovered by β-mercaptoethanol treatment. H2O2 treatment resulted in full resistance to QO site inhibitor myxothiazol and thus it is suggested that the quinol oxidase site (QO) of complex III is the target for H2O2. H2O2 did not modify basal levels of lipid peroxidation in yeast mitochondria. However, H2O2 addition to rat brain and liver mitochondria induced an increase in lipid peroxidation. These results are discussed in terms of the known physiological differences between mammalian and yeast mitochondria.  相似文献   
36.
This study compared two dietary phytochemicals, grape‐derived resveratrol and palm oil‐derived γ‐tocotrienol, either alone or in combination, on the contribution of autophagy in cardioprotection during ischaemia and reperfusion. Sprague‐Dawley rats weighing between 250 and 300 g were randomly assigned to one of the following groups: vehicle, ischaemia/reperfusion (I/R), resveratrol + I/R, γ‐tocotrienol + I/R, resveratrol +γ‐tocotrienol + I/R. For resveratrol treatments, the rats were gavaged with resveratrol (2.5 mg/kg) for 15 days while for γ‐tocotrienol experiments the rats were gavaged with γ‐tocotrienol (0.3 mg/kg) for 30 days. For the combined resveratrol +γ‐tocotrienol experiments, the rats were gavaged with γ‐tocotrienol for 15 days, and then gavaging continued with resveratrol along with γ‐tocotrienol for a further period of 15 days. After 30 days, isolated perfused hearts were subjected to 30 min. of global ischaemia followed by 2 hrs of reperfusion. Our results showed for the first time that at least in part, the cardioprotection (evidenced from the ventricular performance, myocardial infarct size and cardiomyocyte apoptosis) with resveratrol and γ‐toctrienol was achieved by their abilities to induce autophagy. Most importantly, resveratrol and γ‐tocotrienol acted synergistically providing greater degree of cardioprotection simultaneously generating greater amount of survival signal through the activation of Akt‐Bcl‐2 survival pathway. Autophagy was accompanied by the activation of Beclin and LC3‐II as well as mTOR signalling, which were inhibited by either 3‐methyl adenine (3‐MA) or Wortmannin. The autophagy was confirmed from the results of transmission electron microscopy and light microscopy as well as with confocal microscopy. It is tempting to speculate that during ischaemia and reperfusion autophagy along with enhanced survival signals helps to recover the cells from injury.  相似文献   
37.
Kidney transplantation is the treatment of choice for patients suffering from end-stage renal disease. It offers better life expectancy and higher quality of life when compared to dialysis. Although the last few decades have seen major improvements in patient outcomes following kidney transplantation, the increasing shortage of available organs represents a severe problem worldwide. To expand the donor pool, marginal kidney grafts recovered from extended criteria donors (ECD) or donated after circulatory death (DCD) are now accepted for transplantation. To further improve the postoperative outcome of these marginal grafts, research must focus on new therapeutic approaches such as alternative preservation techniques, immunomodulation, gene transfer, and stem cell administration.Experimental studies in animal models are the final step before newly developed techniques can be translated into clinical practice. Porcine kidney transplantation is an excellent model of human transplantation and allows investigation of novel approaches. The major advantage of the porcine model is its anatomical and physiological similarity to the human body, which facilitates the rapid translation of new findings to clinical trials. This article offers a surgical step-by-step protocol for an autotransplantation model and highlights key factors to ensure experimental success. Adequate pre- and postoperative housing, attentive anesthesia, and consistent surgical techniques result in favorable postoperative outcomes. Resection of the contralateral native kidney provides the opportunity to assess post-transplant graft function. The placement of venous and urinary catheters and the use of metabolic cages allow further detailed evaluation. For long-term follow-up studies and investigation of alternative graft preservation techniques, autotransplantation models are superior to allotransplantation models, as they avoid the confounding bias posed by rejection and immunosuppressive medication.  相似文献   
38.
The effect of oxygen on N2-dependent growth of two Azospirillum strains and two diazotrophic rods closely associated with roots of Kallar grass (Leptochloa fusca) was studied. To enable precise comparison, bacteria were grown in dissolved-oxygen-controlled batch and continuous cultures. Steady states were obtained from about 1 to 30 μM O2, some of them being carbon limited. All strains needed a minimum amount of oxygen for N2-dependent growth. Nitrogen contents between 10 and 13% of cell dry weight were observed. The response of steady-state cultures to increasing O2 concentrations suggested that carbon limitation shifted to internal nitrogen limitation when N2 fixation became so low that the bacteria could no longer meet their requirements for fixed nitrogen. For Azospirillum lipoferum Rp5, increase of the dilution rate resulted in decreased N2 fixation in steady-state cultures with internal nitrogen limitation. Oxygen tolerance was found to be strain specific in A. lipoferum with strain Sp59b as a reference organism. Oxygen tolerance of strains from Kallar grass was found to be root zone specific. A. halopraeferens Au 4 and A. lipoferum Rp5, predominating on the rhizoplane of Kallar grass, and strains H6a2 and BH72, predominating in the endorhizosphere, differed in their oxygen tolerance profiles. Strains H6a2 and BH72 still grew and fixed nitrogen in steady-state cultures at O2 concentrations exceeding those which absolutely inhibited nitrogen fixation of both Azospirillum strains. It is proposed that root-zone-specific oxygen tolerance reflects an adaptation of the isolates to the microenvironments provided by the host plant.  相似文献   
39.
Hereditary neuropathies comprise a wide variety of chronic diseases associated to more than 80 genes identified to date. We herein examined 612 index patients with either a Charcot‐Marie‐Tooth phenotype, hereditary sensory neuropathy, familial amyloid neuropathy, or small fiber neuropathy using a customized multigene panel based on the next generation sequencing technique. In 121 cases (19.8%), we identified at least one putative pathogenic mutation. Of these, 54.4% showed an autosomal dominant, 33.9% an autosomal recessive, and 11.6% an X‐linked inheritance. The most frequently affected genes were PMP22 (16.4%), GJB1 (10.7%), MPZ, and SH3TC2 (both 9.9%), and MFN2 (8.3%). We further detected likely or known pathogenic variants in HINT1, HSPB1, NEFL, PRX, IGHMBP2, NDRG1, TTR, EGR2, FIG4, GDAP1, LMNA, LRSAM1, POLG, TRPV4, AARS, BIC2, DHTKD1, FGD4, HK1, INF2, KIF5A, PDK3, REEP1, SBF1, SBF2, SCN9A, and SPTLC2 with a declining frequency. Thirty‐four novel variants were considered likely pathogenic not having previously been described in association with any disorder in the literature. In one patient, two homozygous mutations in HK1 were detected in the multigene panel, but not by whole exome sequencing. A novel missense mutation in KIF5A was considered pathogenic because of the highly compatible phenotype. In one patient, the plasma sphingolipid profile could functionally prove the pathogenicity of a mutation in SPTLC2. One pathogenic mutation in MPZ was identified after being previously missed by Sanger sequencing. We conclude that panel based next generation sequencing is a useful, time‐ and cost‐effective approach to assist clinicians in identifying the correct diagnosis and enable causative treatment considerations.

  相似文献   
40.
Genotyping through the pedigrees of elite soybean [Glycine max (L.) Merr.] cultivars developed by a breeding program represents an opportunity to explore and characterize various molecular and genetic changes that are a direct result of long-term selection by soybean breeders. For soybeans bred for Ontario Canada, one such elite cultivar was OAC Bayfield, which had exceptional commercial success as well as being a parent of a number of successful cultivars developed by multiple independent breeding programs. A total of 42 genotypes from six different breeding programs, comprising the multi-generational pedigree of OAC Bayfield were genotyped with molecular markers and chromosomal inheritance was tracked throughout the pedigree. Cluster analysis showed high congruence with the known pedigree and identified three distinct ancestral groups. The ancestral genotypes contained the majority of the rare alleles, with the cultivar CNS having the greatest number of unique alleles. The graphical genotype profile for the 20 chromosomes revealed conserved allelic composition which has been assembled in certain chromosomes in the form of specific linkage blocks, which were either a result of recombination involving ancestral linkage blocks or linkage blocks introduced from the cultivar Fiskeby-V. The identification of highly structured, conserved genomic regions are important for future breeding efforts as they are indicators of preferentially selected regions, or conversely, may be a contributing factor to low genetic gains due to mass fixation across a breeding program’s germplasm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号