首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   3篇
  2018年   1篇
  2015年   4篇
  2014年   4篇
  2013年   3篇
  2012年   3篇
  2011年   1篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   4篇
  2002年   7篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1997年   2篇
  1993年   1篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1984年   2篇
  1982年   1篇
  1980年   1篇
  1976年   1篇
  1975年   4篇
  1974年   2篇
  1972年   1篇
  1971年   2篇
  1970年   1篇
  1967年   1篇
  1966年   2篇
  1965年   1篇
  1964年   2篇
  1962年   2篇
  1961年   3篇
排序方式: 共有87条查询结果,搜索用时 62 毫秒
11.
12.
13.

Background

QuantiFERON-TB Gold In-Tube (QFT) is an IFNγ-release assay used in the diagnosis of Mycobacterium tuberculosis (MTB) infection. The risk of TB progression increases with the magnitude of the MTB-specific IFNγ-response. QFT reversion, also associated with low Tuberculin Skin Test responses, may therefore represent a transient immune response with control of M. tuberculosis infection. However, studies at the single cell level have suggested that the quality (polyfunctionality) of the T-cell response is more important than the quantity of cytokines produced.

Objective

To explore the quality and/or magnitude of mycobacteria-specific T-cell responses associated with QFT reversion and persistent QFT-positivity.

Methods

Multi-color flowcytometry on prospectively collected peripheral blood mononuclear cells was applied to assess mycobacteria-specific T-cell responses in 42 QFT positive Indian adolescents of whom 21 became QFT negative (reverters) within one year. Ten QFT consistent negatives were also included as controls.

Results

There was no difference in the qualitative PPD-specific CD4+ T-cell response between QFT consistent positives and reverters. However, compared with QFT consistent positives, reverters displayed lower absolute frequencies of polyfunctional (IFNγ+IL2+TNFα+) CD4+ T-cells at baseline, which were further reduced to the point where they were not different to QFT negative controls one year later. Moreover, absolute frequencies of these cells correlated well with the magnitude of the QFT-response.

Conclusion

Whereas specific polyfunctional CD4+ T-cells have been suggested to protect against TB progression, our data do not support that higher relative or absolute frequencies of PPD-specific polyfunctional CD4+ T-cells in peripheral blood can explain the reduced risk of TB progression observed in QFT reverters. On the contrary, absolute frequencies of these cells correlated with the QFT-response, suggesting that this readout reflects antigenic load.  相似文献   
14.
Lymphocytes from antigen-stimulated lymph nodes avidly migrate from the blood to cutaneous sites of inflammation such as DTH reactions or contact sensitivity. One of the initial steps in this migration is the adhesion of the lymphocyte to endothelial cells (EC); therefore, the adhesion of lymphocytes from antigen-stimulated lymph nodes to microvascular EC in the rat was examined. Two to five days after subcutaneous immunization with antigen, lymphocytes that adhered to unstimulated and IFN-gamma-, TNF-alpha-, IL-1 alpha-, and LPS-treated EC were increased in the regional lymph nodes. The enhanced adhesion was attributable to low-density lymphoblast-enriched lymph node cells while small high-density lymphocytes displayed little or no increase in their adhesion. Lymphoblast adhesion required the stimulation of the EC with 10 times the concentrations of IFN-gamma and TNF-alpha required for peritoneal exudate lymphocyte adhesion. There was a synergistic increase in the adhesion of the low-density lymphocytes to EC stimulated with combinations of IFN-gamma and TNF-alpha. Antibody to VLA-4 inhibited about 40% of the stimulated adhesion to EC treated with IFN-gamma, TNF-alpha, or LPS. In vivo anti-VLA-4 inhibited lymphoblast migration to IFN-gamma, TNF-alpha, LPS, and DTH reactions by 60%. Thus antigen stimulates the generation of low-density lymphoblasts that have an enhanced adherence to cytokine- and LPS-treated EC through a partially VLA-4-dependent mechanism and the migration of these cells to cutaneous inflammatory reactions is dependent upon VLA-4.  相似文献   
15.
Since several studies have demonstrated that lipopolysaccharide (LPS), tumor necrosis factor (TNF), and interleukin-1 (IL-1) enhanced lymphocyte binding to endothelial cells in vitro, we examined the effects of these agents on lymphocyte migration in vivo. Small peritoneal exudate lymphocytes (sPEL), which perferentially migrate into inflammatory sites, were radiolabeled with 111In and injected iv into rats. The id injection of LPS was a strong stimulus for the migration of these cells into the skin. TNF alpha was also a good stimulator of lymphocyte migration, while TNF beta and IL-1 alpha were weak or nearly inactive. Kinetic analysis demonstrated that migration to TNF was rapid, with a peak at 6 hr, followed by a steady decline, while migration to LPS was sustained for 24 hr. TNF alpha, TNF beta, and IL-1 alpha, when combined with interferon-gamma (IFN-gamma) or IFN-alpha/beta produced striking synergistic increases in lymphocyte migration. Combinations of the TNFs and IL-1 had less than additive effects, as did combinations of the IFNs. Qualitatively similar migration responses were found when spleen T cells instead of sPEL were studied.  相似文献   
16.
17.
An important event in the migration of lymphocytes out of the blood is their adherence to endothelial cells (EC). In inflammatory sites cytokines activate EC and promote lymphocyte EC adherence and migration. Small peritoneal exudate lymphocytes (sPEL) preferentially migrate from the blood to cutaneous delayed-type hypersensitivity reactions and to sites injected with IFN-gamma, IFN-alpha/beta, and TNF-alpha, rather than to peripheral lymph nodes. The basis of this migration is sPEL adherence to cytokine-activated EC. To study this adhesion mAb to rat sPEL were screened for inhibition of sPEL adherence to IFN-gamma-stimulated EC. One mAb, TA-2, inhibited IFN-gamma-stimulated adherence to EC by 60%. This antibody had no effect on the baseline adherence of sPEL to unstimulated EC. Treatment of sPEL, but not EC, with TA-2-inhibited adhesion. TA-2 also inhibited adhesion to EC activated with mIL-1 alpha, TNF-alpha, and LPS, and the adhesion of spleen T cells to activated EC. The TA-2 Ag was expressed on virtually all lymph node, spleen, and sPEL lymphocytes but sPEL expressed two to three times higher levels than lymph node lymphocytes, and the highest levels were found on CD4+ and CD45R- memory T cells. TA-2 immunoprecipitated a group of four polypeptides with molecular mass of 150, 130, 83, and 66 kDa. Finally, TA-2 inhibited sPEL adhesion to TNF-alpha and IL-1 stimulated human umbilical vein EC to the same extent as an anti-human VCAM-1 mAb, and combinations of TA-2 and anti-VCAM-1 were not different from treatment with either antibody alone. Thus, TA-2 appears to recognize rat VLA-4 based on immunoprecipitation, immunofluorescence, and lymphocyte EC studies. VLA-4 mediates the adhesion of rat lymphocytes to rat microvascular EC stimulated with IFN-gamma, mIL-1 alpha, TNF-alpha, and LPS. VLA-4 is important in the increased adhesion of sPEL to EC and the enhanced sPEL migration to inflammation may in part be explained by increased expression of VLA-4 on these cells.  相似文献   
18.
19.
CCR4 on T cells is suggested to mediate skin homing in mice. Our objective was to determine the interaction of CCR4, E-selectin ligand (ESL), and α(4)β(1) on memory and activated T cells in recruitment to dermal inflammation. mAbs to rat CCR4 were developed. CCR4 was on 5-21% of memory CD4 cells, and 20% were also ESL(+). Anti-TCR-activated CD4 and CD8 cells were 40-55% CCR4(+), and ~75% of both CCR4(+) and CCR4(-) cells were ESL(+). CCR4(+) memory CD4 cells migrated 4- to 7-fold more to dermal inflammation induced by IFN-γ, TNF, TLR agonists, and delayed-type hypersensitivity than CCR4(-) cells. CCR4(+) activated CD4 cells migrated only 5-50% more than CCR4(-) cells to these sites. E-selectin blockade inhibited ~60% of CCR4(+) activated CD4 cell migration but was less effective on memory cells where α(4)β(1) was more important. Anti-α(4)β(1) also inhibited CCR4(-) activated CD4 cells more than CCR4(+) cells. Anti-E-selectin reduced activated CD8 more than CD4 cell migration. These findings modify our understanding of CCR4, ESL, α(4)β(1), and dermal tropism. There is no strict relationship between CCR4 and ESL for skin homing of CD4 cells, because the activation state and inflammatory stimulus are critical determinants. Dermal homing memory CD4 cells express CCR4 and depend more on α(4)β(1) than ESL. Activated CD4 cells do not require CCR4, but CCR4(+) cells are more dependent on ESL than on α(4)β(1), and CCR4(-) cells preferentially use α(4)β(1). The differentiation from activated to memory CD4 cells increases the dependence on CCR4 for skin homing and decreases the requirement for ESL.  相似文献   
20.
The trafficking of effector cells to sites of infection is crucial for antiviral responses. However, the mechanisms of recruitment of the interferon-γ-producing and cytotoxic CD56(+) T cells are poorly understood. Human mast cells are sentinel cells found in the skin and airway and produce selected proinflammatory mediators in response to multiple pathogen-associated signals. The role of human mast cell-derived chemokines in T-cell recruitment to virus infection was examined. Supernatants from primary human cord blood-derived mast cells (CBMCs) infected with mammalian reovirus were examined for chemokine production and utilized in chemotaxis assays. Virus-infected CBMCs produced several chemokines, including CCL3, CCL4, and CCL5. Supernatants from reovirus-infected CBMCs selectively induced the chemotaxis of CD8(+) T cells (10±1%) and CD3(+)CD56(+) T cells (19±5%). CD56(+) T-cell migration was inhibited by pertussis toxin (65±9%) and met-RANTES (56±7%), a CCR1/CCR5 antagonist. CD56(+) T cells expressed CCR5, but little CCR1. The depletion of CCL3, CCL4, and CCL5 from reovirus-infected CBMC supernatants significantly (41±10%) inhibited CD56(+) T-cell chemotaxis. This study demonstrates a novel role for mast cells and CCR5 in CD56(+) T-cell trafficking and suggests that human mast cells enhance immunity to viruses through the selective recruitment of cytotoxic effector cells to virus infection sites. These findings could be exploited to enhance local T-cell responses in chronic viral infection and malignancies at mast cell-rich sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号